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Numbers and Functions

The subject of this course is “functions of one real variable” so we begin by wondering what a real number
“really” is, and then, in the next section, what a function is.

1. What is a number?

1.1. Different kinds of numbers. The simplest numbers are the positive integers

1, 2, 3, 4, · · ·
the number zero

0,

and the negative integers
· · · ,−4,−3,−2,−1.

Together these form the integers or “whole numbers.”

Next, there are the numbers you get by dividing one whole number by another (nonzero) whole number.
These are the so called fractions or rational numbers such as
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By definition, any whole number is a rational number (in particular zero is a rational number.)

You can add, subtract, multiply and divide any pair of rational numbers and the result will again be a
rational number (provided you don’t try to divide by zero).

One day in middle school you were told that there are other numbers besides the rational numbers, and
the first example of such a number is the square root of two. It has been known ever since the time of the
greeks that no rational number exists whose square is exactly 2, i.e. you can’t find a fraction m

n such that
 (m
n

)2
= 2, i.e. m2 = 2n  

2.

x x2

1.2 1.44
1.3 1.69
1.4 1.96 < 2
1.5 2.25 > 2
1.6 2.56

Nevertheless, if you compute x2 for some values of x between 1 and 2, and check if you
get more or less than 2, then it looks like there should be some number x between 1.4 and
1.5 whose square is exactly 2. So, we assume that there is such a number, and we call it
the square root of 2, written as

√
2. This raises several questions. How do we know there

really is a number between 1.4 and 1.5 for which x2 = 2? How many other such numbers
are we going to assume into existence? Do these new numbers obey the same algebra rules
(like a+ b = b+ a) as the rational numbers? If we knew precisely what these numbers (like√

2) were then we could perhaps answer such questions. It turns out to be rather difficult to give a precise
description of what a number is, and in this course we won’t try to get anywhere near the bottom of this
issue. Instead we will think of numbers as “infinite decimal expansions” as follows.

One can represent certain fractions as decimal fractions, e.g.

279

25
=

1116

100
= 11.16.



Not all fractions can be represented as decimal fractions. For instance, expanding 1
3 into a decimal fraction

leads to an unending decimal fraction

1

3
= 0.333 333 333 333 333 · · ·

It is impossible to write the complete decimal expansion of 1
3 because it contains infinitely many digits.

But we can describe the expansion: each digit is a three. An electronic calculator, which always represents
numbers as finite decimal numbers, can never hold the number 1

3 exactly.

Every fraction can be written as a decimal fraction which may or may not be finite. If the decimal
expansion doesn’t end, then it must repeat. For instance,

1

7
= 0.142857 142857 142857 142857 . . .

Conversely, any infinite repeating decimal expansion represents a rational number.

A real number is specified by a possibly unending decimal expansion. For instance,
√

2 = 1.414 213 562 373 095 048 801 688 724 209 698 078 569 671 875 376 9 . . .

Of course you can never write all the digits in the decimal expansion, so you only write the first few digits
and hide the others behind dots. To give a precise description of a real number (such as

√
2) you have to

explain how you could in principle compute as many digits in the expansion as you would like. During the
next three semesters of calculus we will not go into the details of how this should be done.

1.2. A reason to believe in
√

2. The Pythagorean theorem says that the hy-
potenuse of a right triangle with sides 1 and 1 must be a line segment of length

√
2. In

middle or high school you learned something similar to the following geometric construction
of a line segment whose length is

√
2. Take a square with side of length 1, and construct

a new square one of whose sides is the diagonal of the first square. The figure you get
consists of 5 triangles of equal area and by counting triangles you see that the larger
square has exactly twice the area of the smaller square. Therefore the diagonal of the smaller square, being
the side of the larger square, is

√
2 as long as the side of the smaller square.

Why are real numbers called real? All the numbers we will use in this first semester of calculus are
“real numbers.” At some point (in 2nd semester calculus) it becomes useful to assume that there is a number
whose square is −1. No real number has this property since the square of any real number is positive, so
it was decided to call this new imagined number “imaginary” and to refer to the numbers we already have
(rationals,

√
2-like things) as “real.”

1.3. The real number line and intervals. It is customary to visualize the real numbers as points
on a straight line. We imagine a line, and choose one point on this line, which we call the origin. We also
decide which direction we call “left” and hence which we call “right.” Some draw the number line vertically
and use the words “up” and “down.”

To plot any real number x one marks off a distance x from the origin, to the right (up) if x > 0, to the
left (down) if x < 0.

The distance along the number line between two numbers x and y is |x − y|. In particular, the
distance is never a negative number.

−3 −2 −1 0 1 2 3

Figure 1. To draw the half open interval [−1, 2) use a filled dot to mark the endpoint which is included
and an open dot for an excluded endpoint.
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Figure 2. To find
√

2 on the real line you draw a square of sides 1 and drop the diagonal onto the real line.

Almost every equation involving variables x, y, etc. we write down in this course will be true for some
values of x but not for others. In modern abstract mathematics a collection of real numbers (or any other
kind of mathematical objects) is called a set. Below are some examples of sets of real numbers. We will use
the notation from these examples throughout this course.

The collection of all real numbers between two given real numbers form an interval. The following
notation is used

• (a, b) is the set of all real numbers x which satisfy a < x < b.
• [a, b) is the set of all real numbers x which satisfy a ≤ x < b.
• (a, b] is the set of all real numbers x which satisfy a < x ≤ b.
• [a, b] is the set of all real numbers x which satisfy a ≤ x ≤ b.

If the endpoint is not included then it may be ∞ or −∞. E.g. (−∞, 2] is the interval of all real numbers
(both positive and negative) which are ≤ 2.

1.4. Set notation. A common way of describing a set is to say it is the collection of all real numbers
which satisfy a certain condition. One uses this notation

A =
{
x | x satisfies this or that condition

}
Most of the time we will use upper case letters in a calligraphic font to denote sets. (A,B,  C,D, . . . )

For instance, the interval (a, b) can be described as

(a, b) =
{
x | a < x < b

}
The set

B =
{
x | x2 − 1 > 0

}
consists of all real numbers x for which x2 − 1 > 0, i.e. it consists of all real numbers x for which either x > 1
or x < −1 holds. This set consists of two parts: the interval (−∞,−1) and the interval (1,∞).

You can try to draw a set of real numbers by drawing the number line and coloring the points belonging
to that set red, or by marking them in some other way.

Some sets can be very difficult to draw. For instance,

C =
{
x | x is a rational number

}
can’t be accurately drawn. In this course we will try to avoid such sets.

Sets can also contain just a few numbers, like

D = {1, 2, 3}
which is the set containing the numbers one, two and three. Or the set

E =
{
x | x3 − 4x2 + 1 = 0

}
which consists of the solutions of the equation x3 − 4x2 + 1 = 0. (There are three of them, but it is not easy
to give a formula for the solutions.)

If A and B are two sets then the union of A and B is the set which contains all numbers that belong
either to A or to B. The following notation is used

A ∪ B = {x | x belongs to A or to B or both.}



Similarly, the intersection of two sets A and B is the set of numbers which belong to both sets. This
notation is used:

A ∩ B =
{
x | x belongs to both A and B.

}
2. Exercises

1. What is the 2007th digit after the period in the expan-
sion of 1

7
?

2. Which of the following fractions have finite decimal
expansions?

 a =
2

3
 , b =

3

25
 , c =

276937

15625
.

3. Draw the following sets of real numbers. Each of these
sets is the union of one or more intervals. Find those
intervals. Which of thee sets are finite?

A =
{
x | x2 − 3x+ 2 ≤ 0

}
B =

{
x | x2 − 3x+ 2 ≥ 0

}
C =

{
x | x2 − 3x > 3

}
 D =
{
x | x2 − 5 > 2x

}
E =

{
t | t2 − 3t+ 2 ≤ 0

}
F =

{
α | α2 − 3α+ 2 ≥ 0

}
G = (0, 1) ∪ (5, 7]

H =
(
{1} ∪ {2, 3}

)
∩ (0, 2

√
2)

Q =
{
θ | sin θ = 1

2

}
 R =
{
ϕ | cosϕ > 0

}

4. Suppose A and B are intervals. Is it always true that
A ∩ B is an interval? How about A ∪ B?

5. Consider the sets

M =
{
x | x > 0

}
and N =

{
y | y > 0

}
.

Are these sets the same?

6. Group Problem.

Write the numbers

x = 0.3131313131 . . . , y = 0.273273273273 . . .

and z = 0.21541541541541541 . . .

as fractions (i.e. write them as m
n

, specifying m and n.)

(Hint: show that 100x = x + 31. A similar trick
works for y, but z is a little harder.)

7. Group Problem.

Is the number whose decimal expansion after the
period consists only of nines, i.e.

x = 0.99999999999999999 . . .

an integer?

3. Functions

Wherein we meet the main characters of this semester

3.1. Definition. To specify a function f you must

(1) give a rule which tells you how to compute the value  f(x) of the function for a given real number
x, and:

(2) say for which real numbers x the rule may be applied.

The set of numbers for which a function is defined is called its domain. The set of all possible numbers  f(x)
as x runs over the domain is called the range of the function. The rule must be unambiguous: the same
xmust always lead to the same  f(x).

For instance, one can define a function f by putting  f(x) =
√
x for all x ≥ 0. Here the rule defining f is

“take the square root of whatever number you’re given”, and the function f will accept all nonnegative real
numbers.

The rule which specifies a function can come in many different forms. Most often it is a formula, as in
the square root example of the previous paragraph. Sometimes you need a few formulas, as in

g(x) =

{
2x for x < 0

x2 for x ≥ 0
domain of g = all real numbers.

Functions which are defined by different formulas on different intervals are sometimes called piecewise
defined functions.

3.2. Graphing a function. You get the graph of a function f by drawing all points whose coordi-

nates are (x, y) where x must be in the domain of f and y =  f (x).
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y =  f(x) (  x, f(x))

x
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Figure 3. The graph of a function  f . The domain of f consists of all x values at which the function is
defined, and the range consists of all possible values f can have.
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Figure 4. A straight line and its slope. The line is the graph of  f(x) = mx+ n. It intersects the y-axis
at height n, and the ratio between the amounts by which y and x increase as you move from one point
to another on the line is y  1−y0

x  1−x0
= m.

3.3. Linear functions. A function which is given by the formula

 f(x) = mx+ n

where m and n are constants is called a linear function. Its graph is a straight line. The constants m
and n are the slope and y-intercept of the line. Conversely, any straight line which is not vertical (i.e. not
parallel to the y-axis) is the graph of a linear function. If you know two points (x  0, y  0) and (x  1, y  1) on the
line, then then one can compute the slope m from the “rise-over-run” formula

 m =
y1 − y0

x1 − x0
.

 This formula actually contains a theorem from Euclidean geometry, namely it says that the ratio (y1 − y  0) :
(x1 − x  0) is the same for every pair of points (x  0, y  0) and (x  1, y  1) that you could pick on the line.

3.4. Domain and “biggest possible domain. ” In this course we will usually not be careful about
specifying the domain of the function. When this happens the domain is understood to be the set of all x
for which the rule which tells you how to compute  f(x) is meaningful. For instance, if we say that h is the
function

h(x) = √
x



 y  = x3  − x

Figure 5. The graph of y = x3 − x fails the “horizontal line test,” but it passes the “vertical line test.”
The circle fails both tests.

then the domain of h is understood to be the set of all nonnegative real numbers

domain of h = [0,∞)

since
√
x is well-defined for all x ≥ 0 and undefined for x < 0.

A systematic way of finding the domain and range of a function for which you are only given a formula is
as follows:

• The domain of f consists of all x for which  f(x) is well-defined (“makes sense”)
• The range of f consists of all y for which you can solve the equation  f(x) = y.

3.5. Example – find the domain and range of  f(x) = 1/x  2. The expression 1/x2 can be computed
for all real numbers x except x = 0 since this leads to division by zero. Hence the domain of the function
 f(x) = 1/x2 is

“all real numbers except 0” =
{
x | x 6= 0

}
= (−∞, 0) ∪ (0,∞).

To find the range we ask “for which y can we solve the equation y =  f(x) for x,” i.e. we for which y can you
solve y = 1/x2 for x?

If y = 1/x2 then we must have x2 = 1/y, so first of all, since we have to divide by y, y can’t be zero.
Furthermore, 1/y = x2 says that y must be positive. On the other hand, if y > 0 then y = 1/x2 has a solution
(in fact two solutions), namely x = ±1/

√
y. This shows that the range of f is

“all positive real numbers” = {x | x > 0} = (0,∞).

3.6. Functions in “real life. ” One can describe the motion of an object using a function. If some
object is moving along a straight line, then you can define the following function: Let x(t) be the distance
from the object to a fixed marker on the line, at the time t. Here the domain of the function is the set of all
times t for which we know the position of the object, and the rule is

Given t, measure the distance between the object and the marker at time t.

There are many examples of this kind. For instance, a biologist could describe the growth of a cell by
defining m(t) to be the mass of the cell at time t (measured since the birth of the cell). Here the domain is
the interval [0, T ], where T is the life time of the cell, and the rule that describes the function is

Given t, weigh the cell at time t.

3.7. The Vertical Line Property. Generally speaking graphs of functions are curves in the plane but
they distinguish themselves from arbitrary curves by the way they intersect vertical lines: The graph of
a function cannot intersect a vertical line “x = constant” in more than one point. The reason
why this is true is very simple: if two points lie on a vertical line, then they have the same x coordinate, so if

they also lie on the graph of a function  f , then their y-coordinates must also be equal, namely  f (x).



3.8. Examples. The graph of  f(x) = x3−x “goes up and down,” and, even though it intersects several
horizontal lines in more than one point, it intersects every vertical line in exactly one point.

The collection of points determined by the equation x2 +  y2 = 1 is a circle. It is not the graph of a
function since the vertical line x = 0 (the y-axis) intersects the graph in two points P  1(0, 1) and P  2(0,−1).
See Figure 6.

4. Inverse functions and Implicit functions

For many functions the rule which tells you how to compute it is not an explicit formula, but instead an
equation which you still must solve. A function which is defined in this way is called an “implicit function.”

4.1. Example. One can define a function f by saying that for each x the value of  f(x) is the solution y
of the equation

x2 + 2y − 3 = 0.

In this example you can solve the equation for y,

 y =
3− x2

2
.

Thus we see that the function we have defined is  f(x) = (3− x  2)/2.

Here we have two definitions of the same function, namely

(i) “y =  f(x) is defined by x2 + 2y − 3 = 0,” and
(ii) “f is defined by  f(x) = (3− x  2)/2.”

The first definition is the implicit definition, the second is explicit. You see that with an “implicit function”
it isn’t the function itself, but rather the way it was defined that’s implicit.

4.2. Another example: domain of an implicitly defined function. Define g by saying that for
any x the value y = g(x) is the solution of

x2 + xy − 3 = 0.

Just as in the previous example one can then solve for y, and one finds that

g(x) = y =
3− x2

x
.

Unlike the previous example this formula does not make sense when x = 0, and indeed, for x = 0 our rule for
g says that g(0) = y is the solution of

02 + 0 · y − 3 = 0, i.e. y is the solution of 3 = 0.

That equation has no solution and hence x = 0 does not belong to the domain of our function g.

x2 +  y2 = 1
y = +

√
1− x2

 y  = −
√

1− x2

Figure 6. The circle determined by x2 +  y2 = 1 is not the graph of a function, but it contains the graphs
of the two functions h  1(x) =

√
1− x2 and h

 
2(x) = −

√
1− x

 
2.



Limits and Continuous Functions

1. Informal definition of limits

While it is easy to define precisely in a few words what a square root is (
√
a is the positive number whose

square is a) the definition of the limit of a function runs over several terse lines, and most people don’t find it
very enlightening when they first see it. (See §2.) So we postpone this for a while and fine tune our intuition
for another page.

1.1. Definition of limit (1st attempt). If f is some function then

lim
x→a

 f(x) = L

is read “the limit of  f(x) as x approaches a is L.” It means that if you choose values of x which are close but
not equal to a, then  f(x) will be close to the value L; moreover,  f(x) gets closer and closer to L as x gets
closer and closer to a.

The following alternative notation is sometimes used

 f(x)→ L as x→ a;

(read “  f(x) approaches L as x approaches a” or “  f(x) goes to L is x goes to a”.)

1.2. Example. If  f(x) = x+ 3 then
lim
x→4

 f(x) = 7,

is true, because if you substitute numbers x close to 4 in  f(x) = x+ 3 the result will be close to 7.

1.3. Example: substituting numbers to guess a limit. What (if anything) is

lim
x→2

x2 − 2x

x2  − 4
?

Here  f(x) = (x2 − 2x)/(x2 − 4) and a = 2.

We first try to substitute x = 2, but this leads to

 f(2) =
22 − 2 · 2

22 − 4
=

0

0

which does not exist. Next we try to substitute values of x close but not equal to 2. Table 1 suggests that
 f(x) approaches 0.5.

x  f(x)
3.000000 0.600000
2.500000 0.555556
2.100000 0.512195
2.010000 0.501247
2.001000 0.500125

x g(x)
1.000000 1.009990
0.500000 1.009980
0.100000 1.009899
0.010000 1.008991
0.001000 1.000000

Table 1. Finding limits by substituting values of x “close to a.” (Values of  f(x) and g(x) rounded to
six decimals.)



1.4. Example: Substituting numbers can suggest the wrong answer. The previous example
shows that our first definition of “limit” is not very precise, because it says “x close to a,” but how close is
close enough? Suppose we had taken the function

g(x) =
101 000x

100 000x+ 1

and we had asked for the limit limx→0 g(x).

Then substitution of some “small values of x” could lead us to believe that the limit is 1.000 . . .. Only
when you substitute even smaller values do you find that the limit is 0 (zero)!

See also problem 29.

2. The formal, authoritative, definition of limit

The informal description of the limit uses phrases like “closer and closer” and “really very small.” In
the end we don’t really know what they mean, although they are suggestive. “Fortunately” there is a good
definition, i.e. one which is unambiguous and can be used to settle any dispute about the question of whether
limx→a  f(x) equals some number L or not. Here is the definition. It takes a while to digest, so read it once,
look at the examples, do a few exercises, read the definition again. Go on to the next sections. Throughout
the semester come back to this section and read it again.

2.1. Definition of limx→a  f(x) = L. We say that L is the limit of  f(x) as x→ a, if

(1)  f(x) need not be defined at x = a, but it must be defined for all other x in some interval which
contains a.

(2) for every ε > 0 one can find a δ > 0 such that for all x in the domain of f one has

(8) |x− a| < δ implies |  f(x)− L| < ε.

Why the absolute values? The quantity |x − y| is the distance between the points x and y on the
number line, and one can measure how close x is to y by calculating |x− y|. The inequality |x− y| < δ says
that “the distance between x and y is less than δ,” or that “x and y are closer than δ.”

What are ε and δ? The quantity ε is how close you would like  f(x) to be to its limit L; the quantity δ
is how close you have to choose x to a to achieve this. To prove that limx→a  f(x) = L you must assume that
someone has given you an unknown ε > 0, and then find a postive δ for which (8) holds. The δ you find will
depend on ε.

2.2. Show that limx→5 2x+ 1 = 11 . We have  f(x) = 2x+ 1, a = 5 and L = 11, and the question we
must answer is “how close should x be to 5 if want to be sure that  f(x) = 2x+ 1 differs less than ε from
L = 11?”

To figure this out we try to get an idea of how big |  f(x)− L| is:

|  f(x)− L| =
∣∣(2x+ 1)− 11

∣∣ = |2x− 10| = 2 · |x− 5| = 2 · |x− a|.

So, if 2|x− a| < ε then we have |  f(x)− L| < ε, i.e.

if |x− a| < 1
2ε then |  f(x)− L| < ε.

We can therefore choose δ = 1
2ε. No matter what ε > 0 we are given our δ will also be positive, and if

|x− 5|<δ then we can guarantee |(2x+ 1)− 11|<ε. That shows that limx→5 2x+ 1 = 11.



 L  − ε

 L  + ε

L

y =  f(x)

a

How close must x be to a for  f(x) to end up in this range?

 L  − ε

 L  + ε

L

y =  f(x)

 a  + δ a  − δ
a

For some x in this interval  f(x) is not between L− ε and
L + ε. Therefore the δ in this picture is too big for the
given ε. You need a smaller δ.

 L  − ε

 L  + ε

L

y =  f(x)

 a  + δ a  − δ
a

If you choose x in this interval then  f(x) will be between
L− ε and L+ ε. Therefore the δ in this picture is small
enough for the given ε.

2.3. The limit limx→1 x
2 = 1 and the “don’t choose δ > 1” trick. We have  f(x) = x  2, a = 1,

L = 1, and again the question is, “how small should |x− 1| be to guarantee |x2 − 1| < ε?”

We begin by estimating the difference |x2 − 1|

|x2 − 1| = |(x− 1)(x+ 1)| = |x+ 1| · |x− 1|.



Propagation of errors – another interpretation of ε and δ

According to the limit definition “limx→R πx
2 = A” is true if for every ε > 0 you can find a δ > 0 such that

|x−R| < δ implies |πx2 −A| < ε. Here’s a more concrete situation in which ε and δ appear in exactly the same
roles:

Suppose you are given a circle drawn on a piece of
paper, and you want to know its area. You decide to
measure its radius, R, and then compute the area of
the circle by calculating

Area = πR  
2.

The area is a function of the radius, and we’ll call
that function  f :

 f(x) = πx  
2.

When you measure the radius R you will make
an error, simply because you can never measure any-
thing with infinite precision. Suppose that R is the
real value of the radius, and that x is the number you
measured. Then the size of the error you made is

error in radius measurement = |x−R|.

When you compute the area you also won’t get the
exact value: you would get  f(x) = πx2 instead of
A =  f(R) = πR  2. The error in your computed value
of the area is

error in area = |  f(x)−  f(R)| = |  f(x)−A|.

Now you can ask the following question:

Suppose you want to know the area
with an error of at most ε,

then what is the largest error
that you can afford to make

when you measure the radius?

The answer will be something like this: if you want
the computed area to have an error of at most
|  f(x) − A| < ε, then the error in your radius mea-
surement should satisfy |x−R| < δ. You have to do
the algebra with inequalities to compute δ when you
know ε, as in the examples in this section.

You would expect that if your measured radius
x is close enough to the real value R, then your com-
puted area  f(x) = πx2 will be close to the real area
A.

In terms of ε and δ this means that you would
expect that no matter how accurately you want to
know the area (i.e how small you make ε) you can
always achieve that precision by making the error
in your radius measurement small enough (i.e. by
making δ sufficiently small).

As x approaches 1 the factor |x− 1| becomes small, and if the other factor |x+ 1| were a constant (e.g. 2 as
in the previous example) then we could find δ as before, by dividing ε by that constant.

Here is a trick that allows you to replace the factor |x+ 1| with a constant. We hereby agree that we
always choose our δ so that δ ≤ 1. If we do that, then we will always have

|x− 1| < δ ≤ 1, i.e. |x− 1| < 1,

and x will always be beween 0 and 2. Therefore

|x2 − 1| = |x+ 1| · |x− 1| < 3|x− 1|.
If we now want to be sure that |x2 − 1| < ε, then this calculation shows that we should require 3|x− 1| < ε,
i.e. |x− 1| < 1

3ε. So we should choose δ ≤ 1
3ε. We must also live up to our promise never to choose δ > 1, so

if we are handed an ε for which 1
3ε > 1, then we choose δ = 1 instead of δ = 1

3ε. To summarize, we are going
to choose

δ = the smaller of 1 and
1

3
ε.

We have shown that if you choose δ this way, then |x− 1| < δ implies |x2 − 1| < ε, no matter what ε > 0 is.

The expression “the smaller of a and b” shows up often, and is abbreviated to min(a, b). We could
therefore say that in this problem we will choose δ to be

δ = min
(
1, 1

3ε
)
.



2.4. Show that limx→4 1/x = 1/4. Solution: We apply the definition with a = 4, L = 1/4 and
 f(x) = 1/x. Thus, for any ε > 0 we try to show that if |x− 4| is small enough then one has |  f(x)− 1/4| < ε.

We begin by estimating |  f(x)− 1
4 | in terms of |x− 4|:

|  f(x)− 1/4| =
∣∣∣∣ 1x − 1

4

∣∣∣∣ =

∣∣∣∣  4  − x
4x

∣∣∣∣ =
|x− 4|
|4x|

=
1

|4x|
|x− 4|.

As before, things would be easier if 1/|4x| were a constant. To achieve that we again agree not to take δ > 1.
If we always have δ ≤ 1, then we will always have |x− 4| < 1, and hence 3 < x < 5. How large can 1/|4x| be
in this situation? Answer: the quantity 1/|4x| increases as you decrease x, so if 3 < x < 5 then it will never
be larger than 1/|4 · 3| = 1

12 .

We see that if we never choose δ > 1, we will always have

|  f(x)− 1
4 | ≤

1
12 |x− 4| for |x− 4| < δ.

To guarantee that |  f(x)− 1
4 | < ε we could threfore require

1
12 |x− 4| < ε, i.e. |x− 4| < 12ε.

Hence if we choose δ = 12ε or any smaller number, then |x− 4| < δ implies |  f(x)− 4| < ε. Of course we have
to honor our agreement never to choose δ > 1, so our choice of δ is

δ = the smaller of 1 and 12ε = min
(
1, 12ε

)
.

3. Exercises

38. Group Problem.

Joe offers to make square sheets of paper for Bruce.
Given x > 0 Joe plans to mark off a length x and cut
out a square of side x. Bruce asks Joe for a square with
area 4 square foot. Joe tells Bruce that he can’t measure
exactly 2 foot and the area of the square he produces will
only be approximately 4 square foot. Bruce doesn’t mind
as long as the area of the square doesn’t differ more than
0.01 square foot from what he really asked for (namely, 4
square foot).

(a) What is the biggest error Joe can afford to make
when he marks off the length x?

(b) Jen also wants square sheets, with area 4 square
feet. However, she needs the error in the area to be less
than 0.00001 square foot. (She’s paying).

How accurate must Joe measure the side of the
squares he’s going to cut for Jen?

Use the ε–δ definition to prove the following limits

39. lim
x→1

2x− 4 = 6

40. lim
x→2

x2 = 4.

41. lim
x→2

x2 − 7x+ 3 = −7

42. lim
x→3

x3 = 27

43. lim
x→2

x3 + 6x2 = 32.

44. lim
x→4

√
x = 2.

45. lim
x→3

√
x+ 6 = 9.

46. lim
x→2

  1 + x

  4 + x
= 1

 
2

.

47. lim
x→1

 2  − x
 4  − x = 1

 
3

.

48. lim
x→3

x

 6  − x = 1.

49. lim
x→0

√
|x| = 0

50. Group Problem.

(Joe goes cubic.) Joe is offering to build cubes of
side x. Airline regulations allow you take a cube on board
provided its volume and surface area add up to less than 33
(everything measured in feet). For instance, a cube with
2 foot sides has volume+area equal to 23 + 6× 22 = 32.

If you ask Joe to build a cube whose volume plus
total surface area is 32 cubic feet with an error of at
most ε, then what error can he afford to make when he
measures the side of the cube he’s making?

51. Our definition of a derivative in (7) contains a limit.
What is the function “  f” there, and what is the variable?

4. Variations on the limit theme

Not all limits are “for x→ a.” here we describe some possible variations on the concept of limit.



4.1. Left and right limits. When we let “x approach a” we allow x to be both larger or smaller than
a, as long as x gets close to a. If we explicitly want to study the behaviour of  f(x) as x approaches a through
values larger than a, then we write

lim
x↘a

 f(x) or lim
x→a+

 f(x) or lim
x→a+0

 f(x) or lim
x→a,x>a

 f(x).

All four notations are in use. Similarly, to designate the value which  f(x) approaches as x approaches a
through values below a one writes

lim
x↗a

 f(x) or lim
x→a−

 f(x) or lim
x→a−0

 f(x) or lim
x→a,x<a

 f(x).

The precise definition of right limits goes like this:

4.2. Definition of right-limits. Let f be a function. Then

(9) lim
x↘a

 f(x) = L.

means that for every ε > 0 one can find a δ > 0 such that

a < x < a+ δ =⇒ |  f(x)− L| < ε

holds for all x in the domain of  f .

The left-limit, i.e. the one-sided limit in which x approaches a through values less than a is defined in a
similar way. The following theorem tells you how to use one-sided limits to decide if a function  f(x) has a
limit at x = a.

4.3. Theorem. If both one-sided limits

lim
x↘a

 f(x) = L  +, and lim
x↗a

 f(x) = L−

exist, then

lim
x→a

 f(x) exists ⇐⇒ L+ = L  −.

In other words, if a function has both left- and right-limits at some x = a, then that function has a limit
at x = a if the left- and right-limits are equal.

4.4. Limits at infinity. Instead of letting x approach some finite number, one can let x become “larger
and larger” and ask what happens to  f(x). If there is a number L such that  f(x) gets arbitrarily close to L
if one chooses x sufficiently large, then we write

lim
x→∞

 f(x) = L, or lim
x↑∞

 f(x) = L, or lim
x↗∞

 f(x) = L.

(“The limit for x going to infinity is L.”)

4.5. Example – Limit of 1/x . The larger you choose x, the smaller its reciprocal 1/x becomes.
Therefore, it seems reasonable to say

lim
x→∞

1

x
= 0.

Here is the precise definition:

4.6. Definition of limit at ∞. Let f be some function which is defined on some interval x0 < x <∞.
If there is a number L such that for every ε > 0 one can find an A such that

x > A =⇒ |  f(x)− L| < ε

for all x, then we say that the limit of  f(x) for x→∞ is L.

The definition is very similar to the original definition of the limit. Instead of δ which specifies how close
x should be to a, we now have a number A which says how large x should be, which is a way of saying “how
close x should be to infinity.”



4.7. Example – Limit of 1/x (again) . To prove that limx→∞ 1/x = 0 we apply the definition to
 f(x) = 1/x, L = 0.

For given ε > 0 we need to show that

(10)

∣∣∣∣ 1x  − L
∣∣∣∣ < ε for all x > A

provided we choose the right A.

How do we choose A? A is not allowed to depend on x, but it may depend on ε.

If we assume for now that we will only consider positive values of x, then (10) simplifies to

1

x
 < ε

which is equivalent to

 x >
1

ε
.

This tells us how to choose A. Given any positive ε, we will simply choose

 A =
1

ε

Then one has  | 1x − 0| = 1
x < ε for all x > A. Hence we have proved that limx→∞ 1/x = 0.

5. Properties of the Limit

The precise definition of the limit is not easy to use, and fortunately we won’t use it very often in this
class. Instead, there are a number of properties that limits have which allow you to compute them without
having to resort to “epsiloncy.”

The following properties also apply to the variations on the limit from 4. I.e. the following statements
remain true if one replaces each limit by a one-sided limit, or a limit for x→∞.

Limits of constants and of x. If a and c are constants, then

(P  1) lim
x→a

 c  = c

and

(P  2) lim
x→a

x = a.

Limits of sums, products and quotients. Let F1 and F2 be two given functions whose limits for
x→ a we know,

lim
x→a

F  1(x) = L  1, lim
x→a

F  2(x) = L  2.

Then

lim
x→a

(
F  1(x) + F  2(x)

)
= L1 + L  2,(P  3)

lim
x→a

(
F  1(x)− F  2(x)

)
= L1 − L  2,(P  4)

lim
x→a

(
F  1(x) · F  2(x)

)
= L1 · L2(P  5)

Finally, if limx→a F  2(x) 6= 0,

(P  6) lim
x→a

F  1(x)

F  2(x)
=
L1

L2
.

In other words the limit of the sum is the sum of the limits, etc. One can prove these laws using the
definition of limit in §2 but we will not do this here. However, I hope these laws seem like common sense:
if, for x close to a, the quantity F  1(x) is close to L1 and F  2(x) is close to L  2, then certainly F  1(x) + F  2(x)
should be close to L1 + L  2 .



There are two more properties of limits which we will add to this list later on. They are the “Sandwich
Theorem” (§9) and the substitution theorem (§10).

6. Examples of limit computations

6.1. Find limx→2 x  2. One has

lim
x→2

x2 = lim
x→2

 x  · x

=
 (
lim
x→2

x
)
·

 (
lim
x→2

x
)

by (P  5)

= 2 · 2 = 4.

Similarly,

lim
x→2

x3 = lim
x→2

 x  · x2

=
 (
lim
x→2

x
)
·

 (
lim
x→2

x2
)

(P  5) again

= 2 · 4 = 8,

and, by (P  4)

lim
x→2

x2 − 1 = lim
x→2

x2 − lim
x→2

1 = 4− 1 = 3,

and, by (P  4) again,

lim
x→2

x3 − 1 = lim
x→2

x3 − lim
x→2

1 = 8− 1 = 7,

Putting all this together, one gets

lim
x→2

x3  − 1

x2  − 1
=

23 − 1

22 − 1
=

 8  − 1

 4  − 1
=

7

3

because of (P  6). To apply (P  6) we must check that the denominator (“L  2”) is not zero. Since the denominator
is 3 everything is OK, and we were allowed to use (P  6).

6.2. Try the examples 1.3 and 1.4 using the limit properties. To compute limx→  2(x2  −2x)/(x2−
4) we first use the limit properties to find

lim
x→2

x2 − 2x = 0 and lim
x→2

x2 − 4 = 0.

to complete the computation we would like to apply the last property (P  6) about quotients, but this would
give us

lim
x→2

 f(x) =
0

0
.

The denominator is zero, so we were not allowed to use (P  6) (and the result doesn’t mean anything anyway).
We have to do something else.

The function we are dealing with is a rational function, which means that it is the quotient of two
polynomials. For such functions there is an algebra trick which always allows you to compute the limit even
if you first get 0

0 . The thing to do is to divide numerator and denominator by x− 2. In our case we have

x2 − 2x = (x− 2) · x, x2 − 4 = (x− 2) · (x+ 2)

so that

lim
x→2

 f(x) = lim
x→2

(x− 2) · x
(x− 2) · (x+ 2)

= lim
x→2

x

 x  + 2
.

After this simplification we can use the properties (P...) to compute

lim
x→2

 f(x) =
2

  2 + 2
=

1

2
.



6.3. Example – Find limx→2
√
x . Of course, you would think that limx→2

√
x =

√
2 and you can

indeed prove this using δ & ε (See problem 44.) But is there an easier way? There is nothing in the limit
properties which tells us how to deal with a square root, and using them we can’t even prove that there is a
limit. However, if you assume that the limit exists then the limit properties allow us to find this limit.

The argument goes like this: suppose that there is a number L with

lim
x→2

√
x = L.

Then property (P  5) implies that

L2 =
 (
lim
x→2

√
x
)
·

 (
lim
x→2

√
x
)

= lim
x→2

√
x ·
√
x = lim

x→2
x = 2.

In other words, L2 = 2, and hence L must be either
√

2 or −
√

2. We can reject the latter because whatever x
does, its squareroot is always a positive number, and hence it can never “get close to” a negative number like
−
√

2.

Our conclusion: if the limit exists, then

lim
x→2

√
x =
√

2.

The result is not surprising: if x gets close to 2 then
√
x gets close to

√
2.

6.4. Example – The derivative of
√
x at x = 2. Find

lim
x→2

√
x−
√

2

 x  − 2

assuming the result from the previous example.

Solution: The function is a fraction whose numerator and denominator vanish when x = 2, i.e. the limit
is of the form 0

0 . We use the same algebra trick as before, namely we factor numerator and denominator:
√
x−
√

2

 x  − 2
=

√
x−
√

2

(
√
x−
√

2)(
√
x+
√

2)
=

1
√
x+
√  

2
.

Now one can use the limit properties to compute

lim
x→2

√
x−
√

2

 x  − 2
= lim
x→2

1
√
x+
√

2
=

1

2
√

2
=

√
2

4
.

6.5. Limit as x→∞ of rational functions. A rational function is the quotient of two polynomials,
so

(11) R(x) =
anx

n + · · ·+ a  1x+ a0

bmxm + · · ·+ b  1x+ b0
.

We have seen that

lim
x→∞

1

x
 = 0

We even proved this in example 4.7. Using this you can find the limit at ∞ for any rational function R(x) as
in (11). One could turn the outcome of the calculation of limx→∞R(x) into a recipe/formula involving the
degrees n and m of the numerator and denominator, and also their coefficients a  i, b  j , which students would
then memorize, but it is better to remember “the trick.”

To find limx→∞R(x) divide numerator and denominator by xm (the highest power of x occurring in the
denominator).

For example, let’s compute

lim
x→∞

3x2 + 3

5x2 + 7x− 39
.



Remember the trick and divide top and bottom by x  2, and you get

lim
x→∞

3x2 + 3

5x2 + 7x− 39
= lim
x→∞

3 + 3/x2

5 + 7/x− 39/x2

=
limx→∞ 3 + 3/x2

limx→∞ 5 + 7/x− 39/x2

=
3

5

Here we have used the limit properties (P  ∗) to break the limit down into little pieces like limx→∞ 39/x2

which we can compute as follows

lim
x→∞

39/x2 = lim
x→∞

39 ·
 (
1

x

)2

=
(

lim
x→∞

39
)
·
(

lim
x→∞

1

x

)2

= 39 · 02 = 0.

6.6. Another example with a rational function . Compute

lim
x→∞

x

x3  + 5
.

We apply “the trick” again and divide numerator and denominator by x  3. This leads to

lim
x→∞

x

x3  + 5
= lim
x→∞

1/x2

1 + 5/x3
=

limx→∞ 1/x2

limx→∞ 1 + 5/x3
=

0

1
= 0.

To show all possible ways a limit of a rational function can turn out we should do yet another example,
but that one belongs in the next section (see example 7.6.)

7. When limits fail to exist

In the last couple of examples we worried about the possibility that a limit limx→a g(x) actually might
not exist. This can actually happen, and in this section we’ll see a few examples of what failed limits look
like. First let’s agree on what we will call a “failed limit.”

7.1. Definition. If there is no number L such that limx→a  f(x) = L, then we say that the limit
limx→a  f(x) does not exist.

7.2. The sign function near x = 0 . The “sign function1” is defined by

sign(x) =


−1 for x < 0

0 for x = 0

1 for x > 0

Note that “the sign of zero” is defined to be zero. But does the sign function have a limit at x = 0, i.e. does
limx→0 sign(x) exist? And is it also zero? The answers are no and no, and here is why: suppose that for
some number L one had

lim
x→0

sign(x) = L,

then since for arbitrary small positive values of x one has sign(x) = +1 one would think that L = +1. But
for arbitrarily small negative values of x one has sign(x) = −1, so one would conclude that L = −1. But one
number L can’t be both +1 and −1 at the same time, so there is no such L, i.e. there is no limit.

lim
x→0

sign(x) does not exist.

1Some people don’t like the notation sign(x), and prefer to write

g(x) =
x

|x|
instead of g(x) = sign(x). If you think about this formula for a moment you’ll see that sign(x) = x/|x| for all x 6= 0. When
x = 0 the quotient x/|x| is of course not defined.



y = sign(x)
1

−1

Figure 1. The sign function.

In this example the one-sided limits do exist, namely,

lim
x↘0

sign(x) = 1 and lim
x↗0

sign(x) = −1.

All this says is that when x approaches 0 through positive values, its sign approaches +1, while if x goes to 0
through negative values, then its sign approaches −1.

7.3. The example of the backward sine. Contemplate the limit as x→ 0 of the “backward sine,”
i.e.

lim
x→0

sin
 (π
x

)
.

When x = 0 the function  f(x) = sin(π/x) is not defined, because its definition involves division by x.
What happens to  f(x) as x→ 0? First, π/x becomes larger and larger (“goes to infinity”) as x→ 0. Then,
taking the sine, we see that sin(π/x) oscillates between +1 and −1 infinitely often as x → 0. This means
that  f(x) gets close to any number between −1 and +1 as x→ 0, but that the function  f(x) never stays
close to any particular value because it keeps oscillating up and down.

y = sin π
x

1 2 3

1
2

A

B

C

D

E

Figure 2. Graph of y = sin π
x

for −3 < x < 3, x 6= 0.

Here again, the limit limx→0  f(x) does not exist. We have arrived at this conclusion by only considering
what  f(x) does for small positive values of x. So the limit fails to exist in a stronger way than in the example
of the sign-function. There, even though the limit didn’t exist, the one-sided limits existed. In the present
example we see that even the one-sided limit

lim
x↘0

sin
π

x

does not exist.



7.4. Trying to divide by zero using a limit. The expression 1/0 is not defined, but what about

lim
x→0

1

x
?

This limit also does not exist. Here are two reasons:

It is common wisdom that if you divide by a small number you get a large number, so as x ↘ 0 the
quotient 1/x will not be able to stay close to any particular finite number, and the limit can’t exist.

“Common wisdom” is not always a reliable tool in mathematical proofs, so here is a better argument.
The limit can’t exist, because that would contradict the limit properties (P  1) · · · (P  6). Namely, suppose that
there were an number L such that

lim
x→0

1

x
= L.

Then the limit property (P  5) would imply that

lim
x→0

( 1

x
 · x
)

=
 (
lim
x→0

1

x

)
·

 (
lim
x→0

x
)

= L · 0 = 0.

On the other hand 1
x · x = 1 so the above limit should be 1! A number can’t be both 0 and 1 at the same

time, so we have a contradiction. The assumption that limx→0 1/x exists is to blame, so it must go.

7.5. Using limit properties to show a limit does not exist. The limit properties tell us how to
prove that certain limits exist (and how to compute them). Although it is perhaps not so obvious at first
sight, they also allow you to prove that certain limits do not exist. The previous example shows one instance
of such use. Here is another.

Property (P  3) says that if both limx→a g(x) and limx→a h(x) exist then limx→a g(x) + h(x) also must
exist. You can turn this around and say that if limx→a g(x) + h(x) does not exist then either limx→a g(x) or
limx→a h(x) does not exist (or both limits fail to exist).

For instance, the limit

lim
x→0

1

x
 − x

can’t exist, for if it did, then the limit

lim
x→0

1

x
= lim
x→0

( 1

x
 −  x  + x

)
= lim
x→0

( 1

x
 − x
)

+ lim
x→0

x

would also have to exist, and we know limx→0
1
x doesn’t exist.

7.6. Limits at ∞ which don’t exist. If you let x go to ∞, then x will not get “closer and closer” to
any particular number L, so it seems reasonable to guess that

lim
x→∞

x does not exist.

One can prove this from the limit definition (and see exercise 72).

Let’s consider

L = lim
x→∞

x2 + 2x− 1

 x  + 2
.

Once again we divide numerator and denominator by the highest power in the denominator (i.e. x)

L = lim
x→∞

 x   + 2− 1
x

1 + 2/x

Here the denominator has a limit (’tis 1), but the numerator does not, for if limx→∞ x+ 2− 1
x existed then,

since limx  →∞(2− 1/x) = 2 exists,

lim
x→∞

x = lim
x→∞

[(
x+ 2− 1

x

)
−
(
2− 1

x

)]
would also have to exist, and limx→∞ x doesn’t exist.



So we see that L is the limit of a fraction in which the denominator has a limit, but the numerator does
not. In this situation the limit L itself can never exist. If it did, then

lim
x→∞

(
x+ 2− 1

x

)
= lim
x→∞

 x   + 2− 1
x

1 + 2/x
· (1 + 2/x)

would also have to have a limit.

8. What’s in a name?

There is a big difference between the variables x and a in the formula

lim
x→a

2x+ 1,

namely a is a free variable, while x is a dummy variable (or “placeholder” or a “bound variable.”)

The difference between these two kinds of variables is this:

• if you replace a dummy variable in some formula consistently by some other variable then the value
of the formula does not change. On the other hand, it never makes sense to substitute a number for
a dummy variable.
• the value of the formula may depend on the value of the free variable.

To understand what this means consider the example limx→a 2x+ 1 again. The limit is easy to compute:

lim
x→a

2x+ 1 = 2a+ 1.

If we replace x by, say u (systematically) then we get

lim
u→a

2u+ 1

which is again equal to 2a+ 1. This computation says that if some number gets close to a then two times
that number plus one gets close to 2a + 1. This is a very wordy way of expressing the formula, and you
can shorten things by giving a name (like x or u) to the number which approaches a. But the result of our
computation shouldn’t depend on the name we choose, i.e. it doesn’t matter if we call it x or u.

Since the name of the variable x doesn’t matter it is called a dummy variable. Some prefer to call x a
bound variable, meaning that in

lim
x→a

2x+ 1

the x in the expression 2x+ 1 is bound to the x written underneath the limit – you can’t change one without
changing the other.

Substituting a number for a dummy variable usually leads to complete nonsense. For instance, let’s try
setting x = 3 in our limit, i.e. what is

lim
3→a

 2  ·    3 + 1 ?

Of course 2 · 3 + 1 = 7, but what does 7 do when 3 gets closer and closer to the number a? That’s a silly
question, because 3 is a constant and it doesn’t “get closer” to some other number like a! If you ever see 3
get closer to another number then it’s time to take a vacation.

On the other hand the variable a is free: you can assign it particular values, and its value will affect the
value of the limit. For instance, if we set a = 3 (but leave x alone) then we get

lim
x→3

2x+ 1

and there’s nothing strange about that (the limit is 2 · 3 + 1 = 7, no problem.) You could substitute other
values of a and you would get a different answer. In general you get 2a+ 1.



9. Limits and Inequalities

This section has two theorems which let you compare limits of different functions. The properties in
these theorems are not formulas that allow you to compute limits like the properties (P  1). . . (P  6) from §5.
Instead, they allow you to reason about limits, i.e. they let you say that this or that limit is positive, or that
it must be the same as some other limit which you find easier to think about.

The first theorem should not surprise you – all it says is that bigger functions have bigger limits.

9.1. Theorem. Let f and g be functions whose limits for x → a exist, and assume that  f(x) ≤ g(x)
holds for all x. Then

lim
x→a

 f(x) ≤ lim
x→a

g(x).

A useful special case arises when you set  f(x) = 0. The theorem then says that if a function g never has
negative values, then its limit will also never be negative.

The statement may seem obvious, but it still needs a proof, starting from the ε-δ definition of limit. This
will be done in lecture.

Here is the second theorem about limits and inequalities.

9.2. The Sandwich Theorem. Suppose that

 f(x) ≤ g(x) ≤ h(x)

(for all x) and that
lim
x→a

 f(x) = lim
x→a

h(x).

Then
lim
x→a

 f(x) = lim
x→a

g(x) = lim
x→a

h(x).

The theorem is useful when you want to know the limit of g, and when you can sandwich it between
two functions f and h whose limits are easier to compute. The Sandwich Theorem looks like the first theorem
of this section, but there is an important difference: in the Sandwich Theorem you don’t have to assume that
the limit of g exists. The inequalities f ≤ g ≤ h combined with the circumstance that f and h have the same
limit are enough to guarantee that the limit of g exists.

A

B

C 1−1

y = |x|

y = −|x|

Figure 3. Graphs of |x|, −|x| and x cos π
x

for −1.2 < x < 1.2



9.3. Example: a Backward Cosine Sandwich. The Sandwich Theorem says that if the function
g(x) is sandwiched between two functions  f(x) and h(x) and the limits of the outside functions f and h exist
and are equal, then the limit of the inside function g exists and equals this common value. For example

−|x| ≤ x cos
1

x
≤ |x|

since the cosine is always between −1 and 1. Since

lim
x→0
−|x| = lim

x→0
|x| = 0

the sandwich theorem tells us that

lim
x→0

x cos
1

x
= 0.

Note that the limit limx→0 cos(1/x) does not exist, for the same reason that the “backward sine” did not
have a limit for x→ 0 (see example 7.3). Multiplying with x changed that.

10. Continuity

10.1. Definition. A function g is continuous at a if

(12) lim
x→a

g(x) = g(a)

A function is continuous if it is continuous at every a in its domain.

Note that when we say that a function is continuous on some interval it is understood that the domain
of the function includes that interval. For example, the function  f(x) = 1/x2 is continuous on the interval
1 < x < 5 but is not continuous on the interval −1 < x < 1.

10.2. Polynomials are continuous. For instance, let us show that P (x) = x2 + 3x is continuous at
x = 2. To show that you have to prove that

lim
x→2

P (x) = P (2),

i.e.
lim
x→2

x2 + 3x = 22 + 3 · 2.

You can do this two ways: using the definition with ε and δ (i.e. the hard way), or using the limit properties
(P  1). . . (P  6) from §5 (just as good, and easier, even though it still takes a few lines to write it out – do both!)

10.3. Rational functions are continuous. Let R(x) = P (x)
Q(x) be a rational function, and let a be any

number in the domain of R, i.e. any number for which Q(a) 6= 0. Then one has

lim
x→a

R(x) = lim
x→a

P (x)

Q(x)

=
limx→a P (x)

limx→aQ(x)
property (P  6)

=
P (a)

Q(a)
P and Q are continuous

= R(a).

This shows that R is indeed continuous at a.

10.4. Some discontinuous functions. If limx→a g(x) does not exist, then it certainly cannot be equal
to g(a), and therefore any failed limit provides an example of a discontinuous function.

For instance, the sign function g(x) = sign(x) from example ?? is not continuous at x = 0.

Is the backward sine function g(x) = sin(1/x) from example ?? also discontinuous at x = 0? No, it is
not, for two reasons: first, the limit limx→0 sin(1/x) does not exist, and second, we haven’t even defined the
function g(x) at x = 0, so even if the limit existed, we would have no value g(0) to compare it with.



10.5. How to make functions discontinuous. Here is a discontinuous function:

 f(x) =

{
x2 if x 6= 3,

47 if x = 3.

In other words, we take a continuous function like g(x) = x  2, and change its value somewhere, e.g. at x = 3.
Then

lim
x→3

 f(x) = 9 6= 47 =  f(3).

The reason that the limit is 9 is that our new function  f(x) coincides with our old continuous function g(x)
for all x except x = 3. Therefore the limit of  f(x) as x→ 3 is the same as the limit of g(x) as x→ 3, and
since g is continuous this is g(3) = 9.

10.6. Sandwich in a bow tie. We return to the function from example ??. Consider

 f(x) =

{
x cos

 (
1
x

)
for x 6= 0,

0 for x = 0

Then f is continuous at x = 0 by the Sandwich Theorem (see Example ??).

If we change the definition of f by picking a different value at x = 0 the new function will not be
continuous, since changing f at x = 0 does not change the limit limx→0  f(x). Since this limit is zero,  f(0) = 0
is the only possible choice of  f(0) which makes f continuous at x = 0.

11. Substitution in Limits

Given two functions f and g one can consider their composition h(x) =  f(g(x)). To compute the limit

lim
x→a

 f
(
g(x)

)
we write u = g(x), so that we want to know

lim
x→a

 f(u) where u = g(x).

Suppose that you can find the limits

L = lim
x→a

g(x) and lim
u→L

 f(u) =  M.

Then it seems reasonable that as x approaches a, u = g(x) will approach L, and  f(g(x)) approaches  M .

This is in fact a theorem:

11.1. Theorem. If limx→a g(x) = a, and if the function f is continuous at u = L, then

lim
x→a

 f
(
g(x)

)
= lim
u→L

 f(u) =  f(L).

Another way to write this is

lim
x→a

 f
(
g(x)

)
=  f

 (
lim g(x)

)
.



11.2. Example: compute limx→3

√
x3 − 3x2 + 2. The given function is the composition of two func-

tions, namely √
x3 − 3x2 + 2 =

√
u, with u = x3 − 3x2 + 2,

or, in function notation, we want to find limx→3 h(x) where

h(x) =  f(g(x)), with g(x) = x3 − 3x2 + 2 and g(x) =
√
x.

Either way, we have

lim
x→3

x3 − 3x2 + 2 = 2 and lim
u→2

√
u =
√

2.

You get the first limit from the limit properties (P  1). . . (P  5). The second limit says that taking the square
root is a continuous function, which it is. We have not proved that (yet), but this particular limit is the one

from example 6.3. Putting these two limits together we conclude that the limit is
√

2.

Normally, you write this whole argument as follows:

lim
x→3

√
x3 − 3x2 + 2 =

√
lim
x→3

x3 − 3x2 + 2 =
√

2,

where you must point out that  f(x) =
√
x is a continuous function to justify the first step.

Another possible way of writing this is

lim
x→3

√
x3 − 3x2 + 2 = lim

u→2

√
u =
√

2,

where you must say that you have substituted u = x3 − 3x2 + 2.

12. Exercises

Find the following limits.

52. lim
x→−7

(2x+ 5)

53. lim
x→7−

(2x+ 5)

54. lim
x→−∞

(2x+ 5)

55. lim
x→−4

(x+ 3)2006

56. lim
x→−4

(x+ 3)2007

57. lim
x→−∞

(x+ 3)2007

58. lim
t→1

t2 + t− 2

t2 − 1

59. lim
t↗1

t2 + t− 2

t2 − 1

60. lim
t→−1

t2 + t− 2

t2 − 1

61. lim
x→∞

x2  + 3

x2  + 4

62. lim
x→∞

x5  + 3

x2  + 4

63. lim
x→∞

x2  + 1

x5  + 2

64. lim
x→∞

(2x+ 1)4

(3x2 + 1)2

65. lim
u→∞

(2u+ 1)4

(3u2 + 1)2

66. lim
t→0

(2t+ 1)4

(3t2 + 1)2

67. What are the coordinates of the points labeled A, . . . ,
E in Figure 2 (the graph of y = sinπ/x).

68. If limx→a  f(x) exists then f is continuous at x = a.
True or false?

69. Give two examples of functions for which limx↘0  f(x)
does not exist.

70. Group Problem.

If limx→0  f(x) and limx→0 g(x) both do not exist,
then limx→0

(
 f(x) + g(x)

)
also does not exist. True or

false?

71. Group Problem.

If limx→0  f(x) and limx→0 g(x) both do not exist,
then limx→  0(  f(x)/g(x)) also does not exist. True or
false?

72. Group Problem.

In the text we proved that limx→∞
1
x

= 0. Show
that this implies that limx→∞ x does not exist. Hint:
Suppose limx→∞ x = L for some number L. Apply the

limit properties to limx→∞ x ·
1

x
.

73. Evaluate lim
x→9

√
x− 3

 x  − 9
. Hint: Multiply top and bottom

by
√
x+ 3.



O A

B

C

θ

ta
n
θ

si
n
θ

Proving lim
x→0

sin θ

θ
 = 1

The circular wedge OAC contains the
triangle OAC and is contained in the right
triangle  OAB.

The area of triangle OAC is 1
2

sin θ.

The area of circular wedge OAC is 1
2
θ.

The area of right triangle OAB is 1
2

tan θ.

Hence one has sin θ < θ < tan θ for all
angles 0 < θ < π/2.

74. Evaluate lim
x→2

1
x
− 1

2

 x  − 2
.

75. Evaluate lim
x→2

1√
x
− 1√

2

 x  − 2
.

76. A function f is defined by

 f(x) =


x3 for x < −1

ax+ b for − 1 ≤ x < 1

x2 + 2 for x ≥ 1.

where a and b are constants. The function f is continuous.
What are a and b?

77. Find a constant k such that the function

 f(x) =

{
3x+ 2 for x < 2

x2 + k for x ≥ 2.

is continuous. Hint: Compute the one-sided limits.

78. Find constants a and c such that the function

 f(x) =


x3  + c for x < 0

ax+ c2 for 0 ≤ x < 1

arctanx for x ≥ 1.

is continuous for all x.

13. Two Limits in Trigonometry

In this section we’ll derive a few limits involving the trigonometric functions. You can think of them as
saying that for small angles θ one has

sin θ ≈ θ and cos θ ≈ 1− 1
2θ  

2.

We will use these limits when we compute the derivatives of Sine, Cosine and Tangent.

13.1. Theorem. lim
θ→0

sin θ

θ
= 1.

Proof. The proof requires a few sandwiches and some geometry.

We begin by only considering positive angles, and in fact we will only consider angles 0 < θ < π/2.

Since the wedge OAC contains the triangle OAC its area must be larger. The area of the wedge is 1
2θ

and the area of the triangle is 1
2 sin θ, so we find that

(13) 0 < sin θ < θ for 0 < θ <
π

2
.

The Sandwich Theorem implies that

(14) lim
θ↘0

sin θ = 0.

Moreover, we also have

(15) lim
θ↘0

cos θ = lim
θ↘0

√
1− sin2 θ = 1.



Next we compare the areas of the wedge OAC and the larger triangle  OAB. Since OAB has area 1
2 tan θ

we find that
θ < tan θ

for 0 < θ < π
2 . Since tan θ = sin θ

cos θ we can multiply with cos θ and divide by θ to get

cos θ <
sin θ

θ
for 0 < θ <

π

2

If we go back to (15) and divide by θ, then we get

cos θ <
sin θ

θ
 < 1

The Sandwich Theorem can be used once again, and now it gives

lim
θ↘0

sin θ

θ
= 1.

This is a one-sided limit. To get the limit in which θ ↗ 0, you use that sin θ is an odd function. �

13.2. An example. We will show that

(16) lim
θ→0

1− cos θ

θ2
=

1

2
.

This follows from sin2 θ + cos2 θ = 1. Namely,

1− cos θ

θ2
=

1

1 + cos θ

1− cos2 θ

θ2

=
1

1 + cos θ

sin2 θ

θ2

=
1

1 + cos θ

{
sin θ

θ

}2

.

We have just shown that cos θ → 1 and sin θ
θ → 1 as θ → 0, so (16) follows.

14. Exercises

Find each of the following limits or show that it does not
exist. Distinguish between limits which are infinite and
limits which do not exist.

79. lim
α→0

sin 2α

sinα
(two ways: with and without the double

angle formula!)

80. lim
x→0

sin 3x

2x
.

81. lim
θ→0

tan θ

θ
.

82. lim
α→0

tan 4α

sin 2α
.

83. lim
x→0

1− cosx

x sinx
.

84. lim
θ→π/2

1− sin θ

θ − π/2

85. lim
x→∞

2x3 + 3x2 cosx

(x+ 2)3
.

86. lim
x→0

sin2 x

1− cosx
.

87. lim
x→0

sin(x  
2)

x2
.

88. lim
x→0

x(1− cosx)

tan3 x
.

89. lim
x→0

sin(x  
2)

1− cosx
.

90. lim
x→π/2

 x− π
2

cosx
.

91. lim
x→π/2

(x− π
2

) tanx.

92. lim
x→0

cosx

x2  + 9
.

93. lim
x→π

sinx

 x  − π .

94. lim
x→0

sinx

x+ sinx
.

95. A = lim
x→∞

sinx

x
. (!!)

.



97. Is there a constant k such that the function

 f(x) =

{
sin(1/x) for x 6= 0

k for x = 0.

is continuous? If so, find it; if not, say why.

98. Find a constant A so that the function

 f(x) =


sinx

2x
for x 6= 0

A when x = 0

99. Compute limx→∞ x sin π
x

and limx→∞ x tan π
x

. (Hint:
substitute something).

100. Group Problem.

(  Geometry & Trig review) Let An be the area of the
regular n-gon inscribed in the unit circle, and let Bn be
the area of the regular n-gon whose inscribed circle has
radius 1.

(a) Show that An < π < B  n.

(b) Show that

An =
n

2
sin

2π

n
and Bn = n tan

π

n

(c) Compute limn→∞An and limn→∞B  n.

Here is a picture of A  12, B6 and π:

On a historical note: Archimedes managed to com-
pute A96 and B96 and by doing this got the most accurate
approximation for π that was known in his time. See also:

  http://www-history.mcs.st-andrews.ac.uk/

HistTopics/Pi_through_the_ages.html

http://www-history.mcs.st-andrews.ac.uk/HistTopics/Pi_through_the_ages.html
http://www-history.mcs.st-andrews.ac.uk/HistTopics/Pi_through_the_ages.html


Since g is a differentiable function it must also be a continuous function, and hence limx→a g(x) = g(a). So
we can substitute y = g(x) in the limit defining  f  ′(g(a))

(27)  f  
′(g(a)) = lim

y→a

 f(y)−  f(g(a))

y − g(a)
= lim
x→a

 f(g(x))−  f(g(a))

g(x)− g(a)
.

Put all this together and you get

(f ◦ g)  
′(a) = lim

x→a

 f(g(x))−  f(g(a))

 x  − a

= lim
x→a

 f(g(x))−  f(g(a))

g(x)− g(a)
· g(x)− g(a)

 x  − a

= lim
x→a

 f(g(x))−  f(g(a))

g(x)− g(a)
· lim
x→a

g(x)− g(a)

 x  − a
=  f  

′(g(a)) ·  g  
′(a)

which is what we were supposed to prove – the proof seems complete.

There is one flaw in this proof, namely, we have divided by g(x) − g(a), which is not allowed when
g(x)− g(a) = 0. This flaw can be fixed but we will not go into the details here.2 �

13.3. First example. We go back to the functions

z =  f(y) =  y2 + y and y = g(x) = 2x+ 1

from the beginning of this section. The composition of these two functions is

z =  f(g(x)) = (2x+ 1)2 + (2x+ 1) = 4x2 + 6x+ 2.

We can compute the derivative of this composed function, i.e. the derivative of z with respect to x in two
ways. First, you simply differentiate the last formula we have:

(28)
dz

dx
=
d(4x2 + 6x+ 2)

dx
= 8x+ 6.

The other approach is to use the chain rule:

dz

dy
=
d(  y2 + y)

dy
= 2y + 1,

and
dy

dx
=
d(2x+ 1)

dx
= 2.

Hence, by the chain rule one has

(29)
dz

dx
=
dz

dy

dy

dx
= (2y + 1) · 2 = 4y + 2.

The two answers (28) and (29) should be the same. Once you remember that y = 2x+ 1 you see that this is
indeed true:

y = 2x+ 1 =⇒ 4y + 2 = 4(2x+ 1) + 2 = 8x+ 6.

The two computations of  dz/dx therefore lead to the same answer. In this example there was no clear
advantage in using the chain rule. The chain rule becomes useful when the functions f and g become more
complicated.

2 Briefly, you have to show that the function

h(y) =

{
{

 
f(y)−

 
f(g(a))}/(y − g(a)) y 6= a

 f  ′(g(a))  y  = a

is continuous.



caps, then (using the same 100in2 os sheet metal), then
which choice of radius and height of the cylinder give you
the container with the largest volume?

(c) Suppose you only replace the top of the cylinder
with a spherical cap, and leave the bottom flat, then
which choice of height and radius of the cylinder result in
the largest volume?

274. A triangle has one vertex at the origin O(0, 0), another
at the point A(2a, 0) and the third at (a, a/(1 + a  

3)).
What are the largest and smallest areas this triangle can
have if 0 ≤ a <∞?

275. Group Problem.

Queen Dido’s problem

According to tradition Dido was the founder and first
Queen of Carthage. When she arrived on the north coast
of Africa (∼800BC) the locals allowed her to take as
much land as could be enclosed with the hide of one ox.
She cut the hide into thin strips and put these together
to form a length of 100 yards1.

A

B C

D P

Q

R land

water
(a) If Dido wanted a rectangular region, then how

wide should she choose it to enclose as much area as
possible (the coastal edge of the boundary doesn’t count,
so in this problem the length AB + BC + CD is 100
yards.)

(b) If Dido chose a region in the shape of an isosce-
les triangle PQR, then how wide should she make it to
maximize its area (again, don’t include the coast in the
perimiter: PQ+QR is 100 yards long, and PQ = QR.)

276. The product of two numbers x, y is 16. We know
x ≥ 1 and y ≥ 1. What is the greatest possible sum of
the two numbers?

277. What are the smallest and largest values that
(sinx)(sin y) can have if x + y = π and if x and y
are both nonnegative?

278. What are the smallest and largest values that
(cosx)(cos y) can have if x + y = π

2
and if x and y

are both nonnegative?

279. (a) What are the smallest and largest values that
tanx+ tan y can have if x+ y = π

2
and if x and y are

both nonnegative?

(b) What are the smallest and largest values that
tanx+ 2 tan y can have if x+ y = π

2
and if x and y are

both nonnegative?

280. The cost per hour of fuel to run a locomotive is  v  
2/25

dollars, where v is speed (in miles per hour), and other
costs are $100 per hour regardless of speed. What is the
speed that minimizes cost per mile ?

281. Group Problem.

Josh is in need of coffee. He has a circular filter
with 3 inch radius. He cuts out a wedge and glues the
two edges AC and BC together to make a conical filter
to hold the ground coffee. The volume V of the coffee
cone depends the angle θ of the piece of filter paper Josh
made.

(a) Find the volume in terms of the angle θ. (Hint:
how long is the circular arc AB on the left? How long
is the circular top of the cone on the right? If you know
that you can find the radius AD = BD of the top of the
cone, and also the height CD of the cone.)

(b) Which angle θ maximizes the volume V ?

http://en.wikipedia.org/wiki/Dido
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