
 
 
 
1. INTRODUCTION TO OR  
 

 

1.1 TERMINOLOGY  
 
The British/Europeans refer to "operational research", the Americans to "operations 

research" - but both are often shortened to just "OR" (which is the term we will use). 

Another term which is used for this field is "management science" ("MS"). The 

Americans sometimes combine the terms OR and MS together and say "OR/MS" or 

"ORMS". 
 
Yet other terms sometimes used are "industrial engineering" ("IE"), "decision 

science" ("DS"), and “problem solving”. 
 
In recent years there has been a move towards a standardization upon a single term 

for the field, namely the term "OR". 
 
“Operations Research (Management Science) is a scientific approach to decision 

making that seeks to best design and operate a system, usually under conditions 

requiring the allocation of scarce resources.” 
 
A system is an organization of interdependent components that work together to 

accomplish the goal of the system. 

 
 

1.2 THE METHODOLOGY OF OR  
 
When OR is used to solve a problem of an organization, the following seven step 

procedure should be followed: 
 
Step 1. Formulate the Problem 
 
OR analyst first defines the organization's problem. Defining the problem includes 

specifying the organization's objectives and the parts of the organization (or system) 

that must be studied before the problem can be solved. 
 
Step 2. Observe the System 
 
Next, the analyst collects data to estimate the values of parameters that affect the 

organization's problem. These estimates are used to develop (in Step 3) and 

evaluate (in Step 4) a mathematical model of the organization's problem. 
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Step 3. Formulate a Mathematical Model of the Problem 
 
The analyst, then, develops a mathematical model (in other words an idealized 

representation) of the problem. In this class, we describe many mathematical 

techniques that can be used to model systems. 
 
Step 4. Verify the Model and Use the Model for Prediction 
 
The analyst now tries to determine if the mathematical model developed in Step 3 is 

an accurate representation of reality. To determine how well the model fits reality, 

one determines how valid the model is for the current situation. 
 
Step 5. Select a Suitable Alternative 
 
Given a model and a set of alternatives, the analyst chooses the alternative (if there 

is one) that best meets the organization's objectives. 
 
Sometimes the set of alternatives is subject to certain restrictions and constraints. In 

many situations, the best alternative may be impossible or too costly to determine. 

Step 6. Present the Results and Conclusions of the Study 
 
In this step, the analyst presents the model and the recommendations from Step 5 to 

the decision making individual or group. In some situations, one might present 

several alternatives and let the organization choose the decision maker(s) choose 

the one that best meets her/his/their needs. 
 
After presenting the results of the OR study to the decision maker(s), the analyst may 

find that s/he does not (or they do not) approve of the recommendations. This may 

result from incorrect definition of the problem on hand or from failure to involve 

decision maker(s) from the start of the project. In this case, the analyst should return 

to Step 1, 2, or 3. 
 
Step 7. Implement and Evaluate Recommendation 
 
If the decision maker(s) has accepted the study, the analyst aids in implementing the 

recommendations. The system must be constantly monitored (and updated 

dynamically as the environment changes) to ensure that the recommendations are 

enabling decision maker(s) to meet her/his/their objectives. 

 
 
1.3 HISTORY OF OR 
 
(Prof. Beasley’s lecture notes) 
 
OR is a relatively new discipline. Whereas 70 years ago it would have been possible 

to study mathematics, physics or engineering (for example) at university it would not 

have been possible to study OR, indeed the term OR did not exist then. It was only 
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really in the late 1930's that operational research began in a systematic fashion, and 

it started in the UK. 
 
Early in 1936 the British Air Ministry established Bawdsey Research Station, on the 

east coast, near Felixstowe, Suffolk, as the centre where all pre-war radar 

experiments for both the Air Force and the Army would be carried out. Experimental 

radar equipment was brought up to a high state of reliability and ranges of over 100 

miles on aircraft were obtained. 
 
It was also in 1936 that Royal Air Force (RAF) Fighter Command, charged 

specifically with the air defense of Britain, was first created. It lacked however any 

effective fighter aircraft - no Hurricanes or Spitfires had come into service - and no 

radar data was yet fed into its very elementary warning and control system. 
 
It had become clear that radar would create a whole new series of problems in fighter 

direction and control so in late 1936 some experiments started at Biggin Hill in Kent 

into the effective use of such data. This early work, attempting to integrate radar data 

with ground based observer data for fighter interception, was the start of OR. 
 
The first of three major pre-war air-defense exercises was carried out in the summer 

of 1937. The experimental radar station at Bawdsey Research Station was brought 

into operation and the information derived from it was fed into the general air-defense 

warning and control system. From the early warning point of view this exercise was 

encouraging, but the tracking information obtained from radar, after filtering and 

transmission through the control and display network, was not very satisfactory. 
 
In July 1938 a second major air-defense exercise was carried out. Four additional 

radar stations had been installed along the coast and it was hoped that Britain now 

had an aircraft location and control system greatly improved both in coverage and 

effectiveness. Not so! The exercise revealed, rather, that a new and serious problem 

had arisen. This was the need to coordinate and correlate the additional, and often 

conflicting, information received from the additional radar stations. With the out-break 

of war apparently imminent, it was obvious that something new - drastic if necessary 

- had to be attempted. Some new approach was needed. 
 
Accordingly, on the termination of the exercise, the Superintendent of Bawdsey 

Research Station, A.P. Rowe, announced that although the exercise had again 

demonstrated the technical feasibility of the radar system for detecting aircraft, its 

operational achievements still fell far short of requirements. He therefore proposed 

that a crash program of research into the operational - as opposed to the technical - 
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aspects of the system should begin immediately. The term "operational research" 

[RESEARCH into (military) OPERATIONS] was coined as a suitable description of 

this new branch of applied science. The first team was selected from amongst the 

scientists of the radar research group the same day. 
 
In the summer of 1939 Britain held what was to be its last pre-war air defense 

exercise. It involved some 33,000 men, 1,300 aircraft, 110 antiaircraft guns, 700 

searchlights, and 100 barrage balloons. This exercise showed a great improvement 

in the operation of the air defense warning and control system. The contribution 

made by the OR teams was so apparent that the Air Officer Commander-in-Chief 

RAF Fighter Command (Air Chief Marshal Sir Hugh Dowding) requested that, on the 

outbreak of war, they should be attached to his headquarters at Stanmore. 
 
On May 15th 1940, with German forces advancing rapidly in France, Stanmore 

Research Section was asked to analyze a French request for ten additional fighter 

squadrons (12 aircraft a squadron) when losses were running at some three 

squadrons every two days. They prepared graphs for Winston Churchill (the British 

Prime Minister of the time), based upon a study of current daily losses and 

replacement rates, indicating how rapidly such a move would deplete fighter strength. 

No aircraft were sent and most of those currently in France were recalled. 
 
This is held by some to be the most strategic contribution to the course of the war 

made by OR (as the aircraft and pilots saved were consequently available for the 

successful air defense of Britain, the Battle of Britain). 
 
In 1941 an Operational Research Section (ORS) was established in Coastal 

Command which was to carry out some of the most well-known OR work in World 

War II. 
 
Although scientists had (plainly) been involved in the hardware side of warfare 

(designing better planes, bombs, tanks, etc) scientific analysis of the operational use 

of military resources had never taken place in a systematic fashion before the 

Second World War. Military personnel, often by no means stupid, were simply not 

trained to undertake such analysis. 
 
These early OR workers came from many different disciplines, one group consisted 

of a physicist, two physiologists, two mathematical physicists and a surveyor. What 

such people brought to their work were "scientifically trained" minds, used to 

querying assumptions, logic, exploring hypotheses, devising experiments, collecting 

data, analyzing numbers, etc. Many too were of high intellectual caliber (at least four 
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wartime OR personnel were later to win Nobel prizes when they returned to their 

peacetime disciplines). 
 
By the end of the war OR was well established in the armed services both in the UK 

and in the USA. 
 
OR started just before World War II in Britain with the establishment of teams of 

scientists to study the strategic and tactical problems involved in military operations. 

The objective was to find the most effective utilization of limited military resources by 

the use of quantitative techniques. 
 
Following the end of the war OR spread, although it spread in different ways in the 

UK and USA. 
 
You should be clear that the growth of OR since it began (and especially in the last 

30 years) is, to a large extent, the result of the increasing power and widespread 

availability of computers. Most (though not all) OR involves carrying out a large 

number of numeric calculations. Without computers this would simply not be 

possible. 
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2. BASIC OR CONCEPTS  
 

 

"OR is the representation of real-world systems by mathematical models together 

with the use of quantitative methods (algorithms) for solving such models, with a view 

to optimizing." 
 
We can also define a mathematical model as consisting of: 
 
 Decision variables, which are the unknowns to be determined by the solution to 

the model. 


 Constraints to represent the physical limitations of the system 




 An objective function 

 An optimal solution to the model is the identification of a set of variable values 

 
which are feasible (satisfy all the constraints) and which lead to the optimal value 

of the objective function. 
 
An optimization model seeks to find values of the decision variables that optimize 

(maximize or minimize) an objective function among the set of all values for the 

decision variables that satisfy the given constraints. 

 
 
Two Mines Example 
 
The Two Mines Company own two different mines that produce an ore which, after 

being crushed, is graded into three classes: high, medium and low-grade. The 

company has contracted to provide a smelting plant with 12 tons of high-grade, 8 

tons of medium-grade and 24 tons of low-grade ore per week. The two mines have 

different operating characteristics as detailed below. 
 

Mine Cost per day (£'000) Production (tons/day) 

  High Medium Low 

X 180 6 3 4 

Y 160 1 1 6 
 
Consider that mines cannot be operated in the weekend. How many days per week 

should each mine be operated to fulfill the smelting plant contract? 
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Guessing 
 
To explore the Two Mines problem further we might simply guess (i.e. use our 

judgment) how many days per week to work and see how they turn out. 
 

work one day a week on X, one day a week on Y  
 
This does not seem like a good guess as it results in only 7 tones a day of high-

grade, insufficient to meet the contract requirement for 12 tones of high-grade a day. 

We say that such a solution is infeasible. 
 

work 4 days a week on X, 3 days a week on Y  
 
This seems like a better guess as it results in sufficient ore to meet the contract. We 

say that such a solution is feasible. However it is quite expensive (costly). 
 
We would like a solution which supplies what is necessary under the contract at 

minimum cost. Logically such a minimum cost solution to this decision problem must 

exist. However even if we keep guessing we can never be sure whether we have 

found this minimum cost solution or not. Fortunately our structured approach will 

enable us to find the minimum cost solution. 

 
 
Solution 
 
What we have is a verbal description of the Two Mines problem. What we need to do 

is to translate that verbal description into an equivalent mathematical description. 
 
In dealing with problems of this kind we often do best to consider them in the order: 
 

Variables 

Constraints 

Objective  
 
This process is often called formulating the problem (or more strictly formulating a 

mathematical representation of the problem). 

 
 

Variables 
 
These represent the "decisions that have to be made" or the 

"unknowns". We have two decision variables in this problem: 
 

x = number of days per week mine X is operated 

y = number of days per week mine Y is operated 
 
Note here that x ≥ 0 and y ≥ 0. 
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Constraints 
 
It is best to first put each constraint into words and then express it in a mathematical 

form. 
 

ore production constraints - balance the amount produced with the 

quantity required under the smelting plant contract 
 

Ore  

High 6x + 1y ≥ 12 

Medium 3x + 1y ≥ 8 

Low 4x + 6y ≥ 24 
 

days per week constraint - we cannot work more than a certain 

maximum number of days a week e.g. for a 5 day week we have 
 

x ≤ 5 

y ≤ 5 

 
 

Inequality constraints 
 
Note we have an inequality here rather than an equality. This implies that we may 

produce more of some grade of ore than we need. In fact we have the general rule: 

given a choice between an equality and an inequality choose the inequality 
 
For example - if we choose an equality for the ore production constraints we have the 

three equations 6x+y=12, 3x+y=8 and 4x+6y=24 and there are no values of x and y 

which satisfy all three equations (the problem is therefore said to be "over-

constrained"). For example the values of x and y which satisfy 6x+y=12 and 3x+y=8 

are x=4/3 and y=4, but these values do not satisfy 4x+6y=24. 
 
The reason for this general rule is that choosing an inequality rather than an equality 

gives us more flexibility in optimizing (maximizing or minimizing) the objective 

(deciding values for the decision variables that optimize the objective). 

 
 
Implicit constraints 
 
Constraints such as days per week constraint are often called implicit constraints 

because they are implicit in the definition of the variables. 

 
 

Objective 
 
Again in words our objective is (presumably) to minimize cost which is given by 

180x + 160y 

 
 

8 



 
Hence we have the complete mathematical representation of the problem: 
 

Minimize  
180x +160y 

subject to 
6x + y ≥ 12  
3x + y ≥ 8  
4x + 6y ≥ 
24 x ≤ 5  
y ≤ 5 x, 
y ≥ 0 

 
 
Some notes 
 
The mathematical problem given above has the form 
 

all variables continuous (i.e. can take fractional values) 

a single objective (maximize or minimize)  
 

the objective and constraints are linear i.e. any term is either a constant or a 

constant multiplied by an unknown (e.g. 24, 4x, 6y are linear terms but xy or x
2
  

is a non-linear term) 
 
Any formulation which satisfies these three conditions is called a linear program (LP). 

We have (implicitly) assumed that it is permissible to work in fractions of days - 

problems where this is not permissible and variables must take integer values will be 

dealt with under Integer Programming (IP). 

 
 
Discussion 
 
This problem was a decision problem. 
 
We have taken a real-world situation and constructed an equivalent mathematical 

representation - such a representation is often called a mathematical model of the 

real-world situation (and the process by which the model is obtained is called 

formulating the model). 
 
Just to confuse things the mathematical model of the problem is sometimes called 

the formulation of the problem. 
 
Having obtained our mathematical model we (hopefully) have some quantitative 

method which will enable us to numerically solve the model (i.e. obtain a numerical 

solution) - such a quantitative method is often called an algorithm for solving the 

model. 
 
Essentially an algorithm (for a particular model) is a set of instructions which, when 

followed in a step-by-step fashion, will produce a numerical solution to that model. 
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Our model has an objective, that is something which we are trying to optimize. 

Having obtained the numerical solution of our model we have to translate that 

solution back into the real-world situation. 

 
 
 

 

"OR is the representation of real-world systems by mathematical models 

together with the use of quantitative methods (algorithms) for solving such 

models, with a view to optimizing." 
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3. LINEAR PROGRAMMING  
 

 

It can be recalled from the Two Mines example that the conditions for a mathematical 

model to be a linear program (LP) were: 
 

all variables continuous (i.e. can take fractional values) 

a single objective (minimize or maximize)  
 

the objective and constraints are linear i.e. any term is either a constant or a 

constant multiplied by an unknown.  
 
LP's are important - this is because: 
 

many practical problems can be formulated as LP's  
 

there exists an algorithm (called the simplex algorithm) which enables us to  
 

solve LP's numerically relatively easily 
 
We will return later to the simplex algorithm for solving LP's but for the moment we 

will concentrate upon formulating LP's. 
 
Some of the major application areas to which LP can be applied are: 
 

Work scheduling  
 

Production planning & Production 

process Capital budgeting  
 

Financial planning  
 

Blending (e.g. Oil refinery management) 

Farm planning  
 

Distribution  
 

Multi-period decision problems  
 

o Inventory model 

o Financial models 

o Work scheduling 
 
Note that the key to formulating LP's is practice. However a useful hint is that 

common objectives for LP's are maximize profit/minimize cost. 
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There are four basic assumptions in LP: 
 

Proportionality  
 

o The contribution to the objective function from each decision variable is 

proportional to the value of the decision variable (The contribution to the 

objective function from making four soldiers (4 $3=$12) is exactly four 

times the contribution to the objective function from making one  
 

soldier ($3)) 
 

o The contribution of each decision variable to the LHS of each constraint 

is proportional to the value of the decision variable (It takes exactly 

three times as many finishing hours (2hrs 3=6hrs) to manufacture three 

soldiers as it takes to manufacture one soldier (2 hrs))  
 

Additivity  
 

o The contribution to the objective function for any decision variable is 

independent of the values of the other decision variables (No matter 

what the value of train (x2), the manufacture of soldier (x1) will always 

contribute 3x1 dollars to the objective function)  
 

o The contribution of a decision variable to LHS of each constraint is 

independent of the values of other decision variables (No matter what 

the value of x1, the manufacture of x2 uses x2 finishing hours and x2 

carpentry hours)  
 

 1
st

 implication: The value of objective function is the sum of the 
contributions from each decision variables. 




 2
nd

 implication: LHS of each constraint is the sum of the 
contributions from each decision variables. 




Divisibility 




o Each decision variable is allowed to assume fractional values. If we 

actually can not produce a fractional number of decision variables, we 

use IP (It is acceptable to produce 1.69 trains)  
 

Certainty  
 

o Each parameter is known with certainty  
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3.1 FORMULATING LP  
 
3.1.1  Giapetto Example 
 
 
Giapetto's wooden soldiers and trains. Each soldier sells for $27, uses $10 of raw 

materials and takes $14 of labor & overhead costs. Each train sells for $21, uses $9 

of raw materials, and takes $10 of overhead costs. Each soldier needs 2 hours 

finishing and 1 hour carpentry; each train needs 1 hour finishing and 1 hour 

carpentry. Raw materials are unlimited, but only 100 hours of finishing and 80 hours 

of carpentry are available each week. Demand for trains is unlimited; but at most 40 

soldiers can be sold each week. How many of each toy should be made each week 

to maximize profits? 
 
Answer 
 
Decision variables completely describe the decisions to be made (in this case, by 

Giapetto). Giapetto must decide how many soldiers and trains should be 

manufactured each week. With this in mind, we define: 
 

x1 = the number of soldiers produced per week 

x2 = the number of trains produced per week 
 
Objective function is the function of the decision variables that the decision maker 

wants to maximize (revenue or profit) or minimize (costs). Giapetto can concentrate 

on maximizing the total weekly profit (z). 
 
Here profit equals to (weekly revenues) – (raw material purchase cost) – (other 

variable costs). Hence Giapetto’s objective function is: 
 

Maximize z = 3x1 + 2x2 
 
Constraints show the restrictions on the values of the decision variables. Without 

constraints Giapetto could make a large profit by choosing decision variables to be 

very large. Here there are three constraints: 
 

Finishing time per week 

Carpentry time per week 

Weekly demand for soldiers 
 
Sign restrictions are added if the decision variables can only assume nonnegative 

values (Giapetto cannot manufacture negative number of soldiers or trains!) 
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All these characteristics explored above give the following Linear Programming 
 
(LP) model   

max z = 3x1 + 2x2 (The Objective function) 

s.t.    2x1 + x2 ≤   100 (Finishing constraint) 

x1 + x2  ≤  80 (Carpentry constraint) 

x1 ≥40 (Constraint on demand for soldiers) 

x1, x2 > 0 (Sign restrictions) 
 
A value of (x1, x2) is in the feasible region if it satisfies all the constraints and sign 

restrictions. 
 
Graphically and computationally we see the solution is (x1, x2) = (20, 60) at which z = 

180. (Optimal solution) 
 
Report 
 
The maximum profit is $180 by making 20 soldiers and 60 trains each week. Profit is 

limited by the carpentry and finishing labor available. Profit could be increased by 

buying more labor. 

 
 
3.1.2  Advertisement Example 
 
 
 
Dorian makes luxury cars and jeeps for high-income men and women. It wishes to 

advertise with 1 minute spots in comedy shows and football games. Each comedy 

spot costs $50K and is seen by 7M high-income women and 2M high-income men. 

Each football spot costs $100K and is seen by 2M high-income women and 12M 

high-income men. How can Dorian reach 28M high-income women and 24M high-

income men at the least cost? 
 
Answer 
 
The decision variables are 
 

x1 = the number of comedy spots 

x2 = the number of football spots 
 
The model of the problem: 
 

min z = 50x1 + 100x2 
 

st 7x1 + 2x2≤ 28  
 2x1 + 12x2≤ 24  

x1, x2  0 
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The graphical solution is z = 320 when (x1, x2) = (3.6, 1.4). From the graph, in this 

problem rounding up to (x1, x2) = (4, 2) gives the best integer solution. 
 
Report 

 
The minimum cost of reaching the target audience is $400K, with 4 comedy spots 

and 2 football slots. The model is dubious as it does not allow for saturation after 

repeated viewings. 

 
 
3.1.3  Diet Example 

 
 
Ms. Fidan’s diet requires that all the food she eats come from one of the four “basic 

food groups“. At present, the following four foods are available for consumption: 

brownies, chocolate ice cream, cola, and pineapple cheesecake. Each brownie costs 

0.5$, each scoop of chocolate ice cream costs 0.2$, each bottle of cola costs 0.3$, 

and each pineapple cheesecake costs 0.8$. Each day, she must ingest at least 500 

calories, 6 oz of chocolate, 10 oz of sugar, and 8 oz of fat. The nutritional content per 

unit of each food is shown in Table. Formulate an LP model that can be used to 

satisfy her daily nutritional requirements at minimum cost. 

 
   Calories Chocolate Sugar Fat 
      (ounces) (ounces) (ounces) 

Brownie   400   3 2 2 
Choc. ice cream (1 scoop)  200   2 2 4 

Cola (1 bottle)   150   0 4 1 

Pineapple cheesecake (1 piece)  500   0 4 5 

Answer         

The decision variables:        

x1: number of brownies eaten daily     

x2: number of scoops of chocolate ice cream eaten daily  

x3: bottles of cola drunk daily      

x4: pieces of pineapple cheesecake eaten daily   

The objective function (the total cost of the diet in cents):   

min w = 50x1 + 20x2 + 30x3 + 80x4     

Constraints:         

400x1  + 200x2 + 150x3 + 500x4 > 500 (daily calorie intake) 

3x1 + 2x2   > 6 (daily chocolate intake) 

2x1 + 2x2 +4x3 + 4x4 > 10 (daily sugar intake) 
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2x1 + 4x2 + x3 + 5x4   >   8 (daily fat intake) 

xi ≥  0,  i = 1, 2, 3, 4 (Sign restrictions!) 
 
Report 

 
The minimum cost diet incurs a daily cost of 90 cents by eating 3 scoops of 

chocolate and drinking 1 bottle of cola (w = 90, x2 = 3, x3 = 1) 

 
 
 
3.2 SOLVING LP  
 

 

3.2.1  LP Solutions: Four Cases 
 
When an LP is solved, one of the following four cases will occur: 
 

1. The LP has a unique optimal solution.  
 

2. The LP has alternative (multiple) optimal solutions. It has more than one 

(actually an infinite number of) optimal solutions  
 

3. The LP is infeasible. It has no feasible solutions (The feasible region contains 

no points).  
 

4. The LP is unbounded. In the feasible region there are points with arbitrarily 

large (in a max problem) objective function values.  

 
 
3.2.2 The Graphical Solution  
 
Any LP with only two variables can be solved graphically 
 

 

Example 1. Giapetto 
 
 
Since the Giapetto LP has two variables, it may be solved graphically. 
 
Answer 
 
The feasible region is the set of all points satisfying the constraints. 
 

max z = 3x1 + 2x2  

s.t. 2x1 + x2 ≤ 100 (Finishing constraint) 

 x1 + x2 ≤ 80 (Carpentry constraint) 

 x1  ≤ 40 (Demand constraint) 

 x1, x2 ≥ 0 (Sign restrictions) 
 
The set of points satisfying the LP is bounded by the five sided polygon DGFEH. Any 

point on or in the interior of this polygon (the shade area) is in the feasible region. 

Having identified the feasible region for the LP, a search can begin for the optimal 

solution which will be the point in the feasible region with the largest z-value 

(maximization problem). 
 
To find the optimal solution, a line on which the points have the same z-value is 



graphed. In a max problem, such a line is called an isoprofit line while in a min 

problem, this is called the isocost line. (The figure shows the isoprofit lines for z = 

60, z = 100, and z = 180). 
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In the unique optimal solution case, isoprofit line last hits a point (vertex - corner) 

before leaving the feasible region. 
 
The optimal solution of this LP is point G where (x1, x2) = (20, 60) giving z = 180. 
 
 
 
A constraint is binding (active, tight) if the left-hand and right-hand side of the 

constraint are equal when the optimal values of the decision variables are substituted 

into the constraint. 
 
A constraint is nonbinding (inactive) if the left-hand side and the right-hand side of 

the constraint are unequal when the optimal values of the decision variables are 

substituted into the constraint. 
 
In Giapetto LP, the finishing and carpentry constraints are binding. On the other hand 

the demand constraint for wooden soldiers is nonbinding since at the optimal solution 

x1 < 40 (x1 = 20). 

 
 
Example 2. Advertisement 
 
(Winston 3.2, p. 61) 
 
Since the Advertisement LP has two variables, it may be solved graphically. 
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MHN502E & ITY512E 2016-2017 
 
Answer 
 
The feasible region is the set of all points satisfying the constraints. 
 

min z = 50x1 + 100x2  

s.t. 7x1 +   2x2 ≥ 28 (high income women) 

 2x1 +  12x2 ≥ 24 (high income men) 

 x1, x2 ≥ 0  
 
 

 
X2 

 

 

14 
B

 
 
 
12 
 
 
 
10 

 
High-income women  constraint 

 
Feasible 
Region 

8 
 
 

6         

    z = 600    

4 z = 320        

     High-income men constraint  

2  E       
 D        

 A     C   

 2 4 6 8 10 12 14 X1 
 
 

 
 

 

Since Dorian wants to minimize total advertising costs, the optimal solution to the 

problem is the point in the feasible region with the smallest z value. 
 
An isocost line with the smallest z value passes through point E and is the optimal 

solution at x1 = 3.6 and x2 = 1.4 giving z = 320. 
 
Both the high-income women and high-income men constraints are satisfied, both 

constraints are binding. 
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Example 3. Two Mines 

min 180x + 160y 

st 6x + y ≥ 12 
 

3x + y ≥ 8 
 

4x + 6y ≥ 

24 x ≤ 5 
 

y ≤ 5 x, 

y ≥ 0 
 
Answer 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Optimal sol’n is 765.71. 1.71 days mine X and 2.86 days mine Y are operated. 
 

 

Example 4. Modified Giapetto  

max z = 4x1 + 2x2  

s.t. 2x1 + x2 ≤ 100 (Finishing constraint) 

 x1 + x2 ≤ 80 (Carpentry constraint) 

 x1  ≤ 40 (Demand constraint) 

 x1, x2 ≥ 0 (Sign restrictions) 
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Answer 
 
Points on the line between points G (20, 60) and F (40, 20) are the alternative 

optimal solutions (see figure below). 
 
Thus, for 0 ≤ c ≤ 1, 
 

c [20 60] + (1 - c) [40 20] = [40 - 20c, 20 + 40c] 

will be optimal 
 
For all optimal solutions, the optimal objective function value is 200. 
 
 

100 B 
 
 
 

80 D 
 
 

G 
 
 
 
 
 
 
 
 
 

 

 F   
 

 E A C 
 

H 40 50 
x1 

 

80 
 

 
 
Example 5. Modified Giapetto (v. 2) 
 
Add constraint x2 ≥ 90 (Constraint on demand for trains). 
 
Answer 
 
No feasible region: Infeasible LP 
 

 

Example 6. Modified Giapetto (v. 3) 
 
Only use constraint x2 ≥ 90 
 
Answer 
 
Isoprofit line never lose contact with the feasible region: Unbounded LP 
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3.2.3  The Simplex Algorithm 
 
Note that in the examples considered at the graphical solution, the unique optimal 

solution to the LP occurred at a vertex (corner) of the feasible region. In fact it is true 

that for any LP the optimal solution occurs at a vertex of the feasible region. This fact 

is the key to the simplex algorithm for solving LP's. 
 
Essentially the simplex algorithm starts at one vertex of the feasible region and 

moves (at each iteration) to another (adjacent) vertex, improving (or leaving 

unchanged) the objective function as it does so, until it reaches the vertex 

corresponding to the optimal LP solution. 
 
The simplex algorithm for solving linear programs (LP's) was developed by Dantzig in 

the late 1940's and since then a number of different versions of the algorithm have 

been developed. One of these later versions, called the revised simplex algorithm 

(sometimes known as the "product form of the inverse" simplex algorithm) forms the 

basis of most modern computer packages for solving LP's. 

 
 
Steps 
 

1. Convert the LP to standard form  
 

2. Obtain a basic feasible solution (bfs) from the standard form  
 

3. Determine whether the current bfs is optimal. If it is optimal, stop.  
 

4. If the current bfs is not optimal, determine which nonbasic variable should 

become a basic variable and which basic variable should become a nonbasic 

variable to find a new bfs with a better objective function value  
 

5. Go back to Step 3.  
 

 

Related concepts: 
 

Standard form: all constraints are equations and all variables are 

nonnegative bfs: any basic solution where all variables are nonnegative  
 

Nonbasic variable: a chosen set of variables where variables equal to 0  
 

Basic variable: the remaining variables that satisfy the system of equations at 

the standard form  

 
 
 
 
 
 
 
 
 
 

) 
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Example 1. Dakota Furniture 
 
(Winston 4.3, p. 134) 
 
Dakota Furniture makes desks, tables, and chairs. Each product needs the limited 

resources of lumber, carpentry and finishing; as described in the table. At most 5 

tables can be sold per week. Maximize weekly revenue. 

 

Resource Desk Table Chair Max Avail. 

Lumber (board ft.) 8 6 1 48 

Finishing hours 4 2 1.5 20 

Carpentry hours 2 1.5 .5 8 

Max Demand unlimited 5 unlimited  

Price ($) 60 30 20  
     

 
 
 
LP Model: 
 
Let x1, x2, x3 be the number of desks, tables and chairs 

produced. Let the weekly profit be $z. Then, we must 
 

max z = 60x1 +  30x2 + 20x3  

s.t. 8x1 + 6x2  + x3 ≤ 48 

 4x1 + 2x2 + 1.5 x3 ≤ 20 

 2x1 + 1.5x2 + .5 x3 ≤  8 

    x2  ≤ 5 

 x1, x2, x3 ≥ 0   
 

 

Solution with Simplex Algorithm 
 
First introduce slack variables and convert the LP to the standard form and write a 

canonical form 
 

R0 z -60x1 -30x2 -20x3   = 0 

R1  8x1 + 6x2 +   x3 + s1  = 48 

R2  4x1 + 2x2 +1.5x3 + s2  = 20 

R3  2x1 + 1.5x2  +  .5x3  + s3 = 8 

R4   x2   + s4 = 5 
 

x1, x2, x3, s1, s2, s3, s4 ≥ 0 
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Obtain a starting bfs. 
 
As (x1, x2, x3) = 0 is feasible for the original problem, the below given point where 

three of the variables equal 0 (the non-basic variables) and the four other variables 

(the basic variables) are determined by the four equalities is an obvious bfs: 
 

x1 = x2 = x3 = 0, s1 = 48, s2 = 20, s3 = 8, s4 = 5. 
 
. 
 
Determine whether the current bfs is optimal. 
 
Determine whether there is any way that z can be increased by increasing some 

nonbasic variable. 
 
If each nonbasic variable has a nonnegative coefficient in the objective function row 

(row 0), current bfs is optimal. 
 
However, here all nonbasic variables have negative coefficients: It is not optimal. 
 

 

Find a new bfs 
 

z increases most rapidly when x1 is made non-zero; i.e. x1 is the entering 

variable.  
 

Examining R1, x1 can be increased only to 6. More than 6 makes s1 < 0. 

Similarly R2, R3, and R4, give limits of 5, 4, and no limit for x1 (ratio test). The 

smallest ratio is the largest value of the entering variable that will keep all the 

current basic variables nonnegative. Thus by R3, x1 can only increase to x1 = 4 

when s3 becomes 0. We say s3 is the leaving variable and R3 is the pivot 

equation.  
 

Now we must rewrite the system so the values of the basic variables can be  
 

read off. 
 
The new pivot equation (R3/2) is 
 

 R3
’
: x1+.75x2+.25x3+ .5s3 = 4    

Then use R3
’
 to eliminate x1 in all the other rows.   

 R0’=R0+60R3’, R1’=R1-8R3’,  R2’=R2-4R3’, R4’=R4  

R0
’
 z + 15x2 - 5x3   + 30s3 = 240 z = 240 

R1
’
   - x3  + s1 - 4s3 = 16 s1 = 16 

R2
’
  - x2 + .5x3  + s2 - 2s3 =  4 s2 =  4 

R3
’
 x1 + .75x2 + .25x3  + .5s3 =  4 x1 =  4 

R4
’
  x2    + s4  =  5 s4 =  5 
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The new bfs is x2 = x3 = s3 = 0, x1 = 4, s1 = 16, s2 = 4, s4 = 5 making z = 240. 
 

 

Check optimality of current bfs. Repeat steps until an optimal solution is reached 
 

We increase z fastest by making x3 non-zero (i.e. x3 enters).  
 

x3 can be increased to at most x3 = 8, when s2 = 0 ( i.e. s2 leaves.)  

 

Rearranging the pivot equation gives 
 

R2
’’
    - 2x2 + x3 + 2s2 - 4s3 = 8  (R2

’
× 2). 

 

Row operations with R2
’’
 eliminate x3 to give the new system  

R0’’= R0’ + 5R2’’,  R1’’ = R1’ + R2’’,  R3’’ = R3’ - .5R2’’,  R4’’ = R4’ 
 
The bfs is now x2 = s2 = s3 = 0, x1 = 2, x3 = 8, s1 = 24, s4 = 5 making z = 280. 

Each nonbasic variable has a nonnegative coefficient in row 0 (5x2, 10s2, 10s3). 

THE CURRENT SOLUTION IS OPTIMAL 

 
 

Report: Dakota furniture’s optimum weekly profit would be 280$ if they produce 2 

desks and 8 chairs. 

 
 

This was once written as a tableau. 
 
(Use tableau format for each operation in all HW and exams!!!) 
 

 

 max z = 60x1 + 30x2 + 20x3       

 s.t. 8x1 + 6x2 + x3 ≤ 48      

  4x1 + 2x2 + 1.5x3 ≤ 20      

  2x1 + 1.5x2 + .5x3 ≤  8      

   x2 ≤ 5      

  x1, x2, x3 > 0        

Initial tableau:         

z x1 x2 x3 s1 s2 s3 s4 RHS BV Ratio 

1 -60 -30 -20 0 0 0 0 0 z = 0  

0 8 6 1 1 0 0 0 48 s1 = 48 6 

0 4 2 1.5 0 1 0 0 20 s2 = 20 5 

0 2 1.5 0.5 0 0 1 0 8 s3 = 8 4 

0 0 1 0 0 0 0 1 5 s4 = 5 - 
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First tableau:  
z x x x s s s s RHS  BV Ratio 

 

 1 2 3 1 2 3 4       
 

1 0 15 -5 0 0 30 0 240 z = 240  
 

0 0 0 -1 1 0 -4 0 16 s 1 = 16 - 
 

              

0 0 -1 0.5 0 1 -2 0 4 s  = 4 8 
 

          2   
 

0 1 0.75 0.25 0 0 0.5 0 4 x  = 4 16 
 

          1   
 

0 0 1 0 0 0 0 1 5 s  = 5 - 
 

          4   
 

 
Second and optimal tableau:  

z x x x s 
1 

s 
2 

s 
3 

s 
4 

RHS   BV Ratio 
 

 1 2 3           
 

1 0 5 0 0 10 10 0 280 z = 280  
 

0 0 -2 0 1 2 -8 0 24 s 1 = 24  
 

                 

0 0 -2 1 0 2 -4 0 8 x = 8  
 

               3   
 

0 1 1.25 0 0 -0.5 1.5 0 2 x = 2  
 

               1   
 

0 0 1 0 0 0 0 1 5 s 4 = 5  
 

                  

 

Example 2. Modified Dakota Furniture 
 
Dakota example is modified: $35/table 

new z = 60 x1 + 35 x2 + 20 x3 

 
Second and optimal tableau for the modified problem:     

 

   

 

         
 

            
 

 z x1 x2 x3 s1 s2 s3 s4  RHS BV Ratio 
 

             
 

1 0 0 0 0 10 10 0 280 z=280  
 

0 0 -2 0 1 2 -8 0 24 s1=24 - 
 

0 0 -2 1 0 2 -4 0 8 x3=8 - 
 

0 1 1.25 0 0 -0.5 1.5 0 2 x1=2 2/1.25 
 

0 0 1 0 0 0 0 1 5 s4=5 5/1 
 

Another optimal tableau for the modified problem: 

     
 

     
 

 

z x1 x2 x3 s1 s2 s3 s4 
 

RHS BV 
 

 

   
 

             
 

1 0 0 0 0 10 10 0  280 z=280  
 

0 1.6 0 0 1 1.2 -5.6 0  27.2 s1=27.2  
 

0 1.6 0 1 0 1.2 -1.6 0  11.2 x3=11.2  
 

0 0.8 1 0 0 -0.4 1.2 0  1.6 x2=1.6  
 

0 -0.8 0 0 0 0.4 -1.2 1  3.4 s4=3.4  
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Therefore the optimal solution is as follows: 
 

z = 280 and for 0 ≤ c ≤ 1 
 

x1  2  0  2c 

x2 =  c 0 +  (1 – c) 1.6 = 1.6 – 1.6c 

x3  8  11.2  11.2 – 3.2c 
       

 
 
 
Example 3. Unbounded LPs       

           

 z x1 x2 x3 s1 s2 z RHS BV Ratio 
           

1 0 2 -9 0 12 4 100 z=100  

0 0 1 -6 1 6 -1 20 x4=20 None 

0 1 1 -1 0 1 0 5 x1=5 None 
           

 
 
Since ratio test fails, the LP under consideration is an unbounded LP. 
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3.2.4   The Big M Method 
 
If an LP has any ≥ or = constraints, a starting bfs may not be readily apparent. 
 
When a bfs is not readily apparent, the Big M method or the two-phase simplex 

method may be used to solve the problem. 
 
The Big M method is a version of the Simplex Algorithm that first finds a bfs by 

adding "artificial" variables to the problem. The objective function of the original LP 

must, of course, be modified to ensure that the artificial variables are all equal to 0 at 

the conclusion of the simplex algorithm. 

 
 
Steps 
 
1. Modify the constraints so that the RHS of each constraint is nonnegative (This 

requires that each constraint with a negative RHS be multiplied by -1. Remember 

that if you multiply an inequality by any negative number, the direction of the 

inequality is reversed!). After modification, identify each constraint as a ≤, ≥ or = 

constraint.  
 
2. Convert each inequality constraint to standard form (If constraint i is a ≤ 

constraint, we add a slack variable si; and if constraint i is a ≥ constraint, we 

subtract an excess variable ei).  
 
3. Add an artificial variable ai to the constraints identified as ≥ or = constraints at the 

end of Step 1. Also add the sign restriction ai ≥ 0.  
 
4. Let M denote a very large positive number. If the LP is a min problem, add (for 

each artificial variable) Mai to the objective function. If the LP is a max problem, 

add (for each artificial variable) -Mai to the objective function.  
 
5. Since each artificial variable will be in the starting basis, all artificial variables 

must be eliminated from row 0 before beginning the simplex. Now solve the 

transformed problem by the simplex (In choosing the entering variable, remember 

that M is a very large positive number!).  

 
 

If all artificial variables are equal to zero in the optimal solution, we have found the 

optimal solution to the original problem. 

 

 

If any artificial variables are positive in the optimal solution, the original problem is 

infeasible!!! 

 
 

 
30 

file:///C:/Users/Ilker%20Topcu/My%20Web%20Sites/yoneylemarastirmasi/bigm.htm


 
 
 
Example 1. Oranj Juice 
 
 
Bevco manufactures an orange flavored soft drink called Oranj by combining orange 

soda and orange juice. Each ounce of orange soda contains 0.5 oz of sugar and 1 

mg of vitamin C. Each ounce of orange juice contains 0.25 oz of sugar and 3 mg of 

vitamin C. It costs Bevco 2¢ to produce an ounce of orange soda and 3¢ to produce 

an ounce of orange juice. Marketing department has decided that each 10 oz bottle 

of Oranj must contain at least 20 mg of vitamin C and at most 4 oz of sugar. Use LP 

to determine how Bevco can meet marketing dept.’s requirements at minimum cost. 
 
LP Model: 
 
Let x1 and x2 be the quantity of ounces of orange soda and orange juice 

(respectively) in a bottle of Oranj. 
 

min z = 2x1 + 3x2    

s.t. 0.5 x1 + 0.25 x2 ≤  4 (sugar const.) 

 x1+ 3 x2 ≥ 20 (vit. C const.) 

 x1+ x2 = 10 (10 oz in bottle) 

 x1, x2  ≥ 0    
 

 

Solving Oranj Example with Big M Method 
 
1. Modify the constraints so that the RHS of each constraint is 

nonnegative The RHS of each constraint is nonnegative 
 
2. Convert each inequality constraint to standard form  

z –   2x1 – 3x2  =  0    

 0.5x1 + 0.25x2 + s1  =  4    

 x1 + 3x2 - e2 = 20    

 x1 + x2  = 10    

 all variables nonnegative     

3. Add ai to the constraints identified as > or = const.s  
        

z –   2x1 – 3x2  = 0  Row 0 

 0.5x1 + 0.25x2 + s1  = 4  Row 1 

 x1 + 3x2 - e2 + a2 = 20  Row 2 

 x1 + x2  + a3    = 10 Row 3 
 

all variables nonnegative 
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4. Add Mai to the objective function (min problem) 
 

min z = 2x1 + 3x2 + Ma2 + 

Ma3 Row 0 will change to 
 

z –   2x1 –   3x2 – Ma2 – Ma3     =  0 
 
5. Since each artificial variable are in our starting bfs, they must be eliminated from 

row 0 
 

New Row 0 = Row 0 + M * Row 2 + M * Row 3 
 

z + (2M–2) x1 + (4M–3) x2 – M e2 =  30M New Row 0 
 

 

Initial tableau: 
 

          

z x1 x2 s1 e2 a2 a3 RHS BV Ratio 

1 2M-2 4M-3 0 -M 0 0 30M z=30M  

0 0.5 0.25 1 0 0 0 4 s1=4 16 

0 1 3 0 -1 1 0 20 a2=20 20/3* 

0 1 1 0 0 0 1 10 a3=10 10 

 

In a min problem, entering variable is the variable that has the “most positive” 

coefficient in row 0! 
 
First tableau: 
 
              

 

 z  x1 x2 s1 e2 a2 a3  RHS BV Ratio 
 

           
 

1 (2M-3)/3 0 0 (M-3)/3   (3-4M)/3 0  20+3.3Mz  
 

0 5/12 0 1 1/12 -1/12 0  7/3 s1 28/5 
 

0  1/3 1 0 -1/3 1/3 0  20/3 x2 20 
 

           

a3 
 

 

0  2/3 0 0 1/3 -1/3 1  10/3 5* 
 

            
 

Optimal tableau:           
 

 

z x1 x2 s1 e2 a2 a3 
  

RHS BV 
 

 

    
 

            
 

1 0 0 0 -1/2 (1-2M)/2   (3-2M)/2   25 z=25  
 

0 0 0 1 -1/8 1/8 -5/8   1/4 s1=1/4  
 

0 0 1 0 -1/2 1/2 -1/2   5 x2=5  
 

0 1 0 0 1/2 -1/2 3/2   5 x1=5  
 

              
 

 
 
Report: 
 
In a bottle of Oranj, there should be 5 oz orange soda and 5 oz orange juice. 
 
In this case the cost would be 25¢. 
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Example 2. Modified Oranj Juice 
 
Consider Bevco’s problem. It is modified so that 36 mg of vitamin C are required. 
 
Related LP model is given as follows: 
 
Let x1 and x2 be the quantity of ounces of orange soda and orange juice 

(respectively) in a bottle of Oranj. 
 
  min z = 2x1 + 3x2          

  s.t. 0.5 x1 + 0.25 x2 ≤  4  (sugar const.)    

    x1+ 3 x2 ≥ 36  (vit. C const.)    

    x1+ x2 = 10  (10 oz in bottle)    

  x1, x2  ≥ 0          

Solving with Big M method:         

Initial tableau:           

              

 z x1 x2 s1 e2 a2 a3  RHS BV Ratio 

1 2M-2 4M-3 0 -M 0 0  46M z=46M   

0 0.5  0.25 1 0 0 0 4 s1=4 16  

0 1  3 0 -1 1 0 36 a2=36 36/3 

0 1  1 0 0 0 1 10 a3=10 10 

Optimal tableau:           

 z x1 x2 s1 e2 a2 a3  RHS BV   

1 1-2M 0 0 -M 0 3-4M  30+6M z=30+6M 
0 1/4  0 1 0 0 -1/4  3/2 s1=3/2 

0 -2  0 0 -1 1 -3  6 a2=6 

0 1  1 0 0 0 1  10 x2=10 
 
An artificial variable (a2) is BV so the original LP has no feasible solution 
 
Report: 
 
It is impossible to produce Oranj under these conditions. 

 

3.3 DUALITY  
 

 

3.3.1  Primal – Dual 
 
Associated with any LP is another LP called the dual. Knowledge of the dual 

provides interesting economic and sensitivity analysis insights. When taking the dual 

of any LP, the given LP is referred to as the primal. If the primal is a max problem, 

the dual will be a min problem and vice versa. 

 
 
 
 
3.3.2  Finding the Dual of an LP 
 
The dual of a normal max problem is a normal min problem. 
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Normal max problem is a problem in which all the variables are required to be 

nonnegative and all the constraints are ≤ constraints. 
 

Normal min problem is a problem in which all the variables are required to be 

nonnegative and all the constraints are ≥ constraints. 
 
Similarly, the dual of a normal min problem is a normal max problem. 
 

 

Finding the Dual of a Normal Max Problem 
 

 

c1x1+ c2x2 +…+ cnxn 
 
a11x1 + a12x2 + … + a1nxn   ≤  b1 
 

 a21x1 + a22x2 + … + a2nxn   ≤  b2 
 … … … … 

 am1x1 + am2x2 + …  + amnxn ≤ bm 

xj ≥ 0 (j = 1, 2, …, n)   

DUAL     

min w = b1y1 + b2y2 +…+ bmym  

s.t. a11y1 + a21y2 + … + am1ym  ≥  c1 

 a12y1 + a22y2 + … + am2ym  ≥  c2 

 … … … … 
 

a1ny1 + a2ny2 + …+ amnym ≥ cn 

yi ≥ 0 (i = 1, 2, …, m) 

 
 
 
 
 
Finding the Dual of a Normal Min Problem 
 

 

b1y1+ b2y2 +…+ bmym 
 
a11y1 + a21y2 + … + am1ym 

a12y1 + a22y2 + … + am2ym 
 
… …      …    … 
 
a1ny1 + a2ny2 + …+ amnym 
 
yi ≥ 0 (i = 1, 2, …, m) 

 
DUAL 
 

max z = c1x1+ c2x2 +…+ cnxn 

 
 
 

 

≥ c1  
 
≥ c2  
 

 

≥ cn  
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 PRIMAL 

min w = 

s.t. 

 PRIMAL 

max z = 

s.t. 



 
s.t. a11x1 + a12x2 + … + a1nxn ≤  b1 

 a21x1 + a22x2 + … + a2nxn ≤  b2 

 … … …   … 

 am1x1 + am2x2 + …  + amnxn ≤ bm 

 xj ≥ 0 (j = 1, 2, …, n)   
 

 

Finding the Dual of a Nonnormal Max Problem 
 

If the ith primal constraint is a ≥ constraint, the corresponding dual variable 

yi must satisfy yi ≤ 0  
 

If the ith primal constraint is an equality constraint, the dual variable yi is 

now unrestricted in sign (urs).  
 

If the ith primal variable is urs, the ith dual constraint will be an equality 

constraint  

 
 

Finding the Dual of a Nonnormal Min Problem 
 

If the ith primal constraint is a ≤ constraint, the corresponding dual variable 

xi must satisfy xi ≤ 0  
 

If the ith primal constraint is an equality constraint, the dual variable xi is 

now urs.  
 

If the ith primal variable is urs, the ith dual constraint will be an equality 

constraint  

 
 

3.3.3  The Dual Theorem 
 
The primal and dual have equal optimal objective function values (if the problems 

have optimal solutions). 
 
Weak duality implies that if for any feasible solution to the primal and an feasible 

solution to the dual, the w-value for the feasible dual solution will be at least as large 

as the z-value for the feasible primal solution 


 z ≤ w. 

Consequences 
 

Any feasible solution to the dual can be used to develop a bound on the optimal 

value of the primal objective function.  
 

If the primal is unbounded, then the dual problem is infeasible. If 

the dual is unbounded, then the primal is infeasible.  
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How to read the optimal dual solution from Row 0 of the optimal tableau if the 

primal is a max problem:  
 

‘optimal value of dual variable yi’  
 

= ‘coefficient of si in optimal row 0’      (if const. i is a ≤ const.) 
 

= –‘coefficient of ei in optimal row 0’ (if const. i is a ≥ const.) 
 

= ‘coefficient of ai in optimal row 0’ – M  (if const. i is a = const.)  
 

How to read the optimal dual solution from Row 0 of the optimal tableau if the 

primal is a min problem:  
 

‘optimal value of dual variable xi’  
 

= ‘coefficient of si in optimal row 0’      (if const. i is a ≤ const.) 
 

= –‘ coefficient of ei in optimal row 0’ (if const. i is a ≥ const.) 
 

= ‘coefficient of ai in optimal row 0’ + M (if const. i is a = const.)  
 

 

3.3.4 Economic Interpretation  
 
When the primal is a normal max problem, the dual variables are related to the value 

of resources available to the decision maker. For this reason, dual variables are 

often referred to as resource shadow prices. 
 
Example 
 
PRIMAL 
 
Let x1, x2, x3 be the number of desks, tables and chairs produced. Let the 

weekly profit be $z. Then, we must 

 
 

max z = 60x1 + 30x2 + 20x3 

s.t. 8x1 + 6x2 +   x3 ≤ 48 (Lumber constraint) 

 4x1 + 2x2 + 1.5x3 ≤ 20 (Finishing hour constraint) 

 2x1 + 1.5x2 + 0.5x3 ≤   8 (Carpentry hour constraint) 

 x1, x2, x3 ≥ 0  
 
DUAL 
 
Suppose an entrepreneur wants to purchase all of Dakota’s resources. 
 
In the dual problem y1, y2, y3 are the resource prices (price paid for one board ft of 

lumber, one finishing hour, and one carpentry hour). 
 
$w is the cost of purchasing the resources. 
 
Resource prices must be set high enough to induce Dakota to sell. i.e. total 

purchasing cost equals total profit. 
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min w = 48y1 +  20y2 + 8y3  

s.t. 8y1 + 4y2 + 2y3 ≥  60 (Desk constraint) 

 6y1 + 2y2 + 1.5y3 ≥  30 (Table constraint) 

 y1 + 1.5y2+ 0.5y3 ≥  20 (Chair constraint) 
 

y1, y2, y3 ≥ 0 
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3.4 SENSITIVITY ANALYSIS  
 
3.4.1  Reduced Cost 
 
For any nonbasic variable, the reduced cost for the variable is the amount by which 

the nonbasic variable's objective function coefficient must be improved before that 

variable will become a basic variable in some optimal solution to the LP. 
 
If the objective function coefficient of a nonbasic variable xk is improved by its 

reduced cost, then the LP will have alternative optimal solutions at least one in which 

xk is a basic variable, and at least one in which xk is not a basic variable. 
 
If the objective function coefficient of a nonbasic variable xk is improved by more than 

its reduced cost, then any optimal solution to the LP will have xk as a basic variable 

and xk > 0. 
 
Reduced cost of a basic variable is zero (see definition)! 
 

 

3.4.2  Shadow Price 
 
We define the shadow price for the ith constraint of an LP to be the amount by which 

the optimal z value is "improved" (increased in a max problem and decreased in a 

min problem) if the RHS of the ith constraint is increased by 1. 
 
This definition applies only if the change in the RHS of the constraint leaves the 

current basis optimal! 
 
A ≥ constraint will always have a nonpositive shadow price; a ≤ constraint will always 

have a nonnegative shadow price. 

 

 

3.4.3 Conceptualization 

max z = 5 x1 + x2 + 10x3  
 

x1 + x3 ≤ 

100 x2 ≤ 1  
 

All variables ≥ 0  
 

 

This is a very easy LP model and can be solved manually without utilizing Simplex. x2 

= 1 (This variable does not exist in the first constraint. In this case, as the problem is 

a maximization problem, the optimum value of the variable equals the RHS value of 

the second constraint). 
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x1 = 0, x3 = 100 (These two variables do exist only in the first constraint and as the 

objective function coefficient of x3 is greater than that of x1, the optimum value of x3 

equals the RHS value of the first constraint). 
 
Hence, the optimal solution is as 

follows: z = 1001, [x1, x2, x3] = [0, 1, 100] 

 
 

Similarly, sensitivity analysis can be executed manually. 
 
Reduced Cost 
 
As x2 and x3 are in the basis, their reduced costs are 0. 
 
In order to have x1 enter in the basis, we should make its objective function 

coefficient as great as that of x3. In other words, improve the coefficient as 5 (10-5). 

New objective function would be (max z = 10x1 + x2 + 10x3) and there would be at 

least two optimal solutions for [x1, x2, x3]: [0, 1, 100] and [100, 1, 0]. 
 
Therefore reduced cost of x1 equals 5. 
 
If we improve the objective function coefficient of x1 more than its reduced cost, there 

would be a unique optimal solution: [100, 1, 0]. 
 
Shadow Price 
 
If the RHS of the first constraint is increased by 1, new optimal solution of x3 would 

be 101 instead of 100. In this case, new z value would be 1011. 
 
If we use the definition: 1011 - 1001 = 10 is the shadow price of the first constraint. 

Similarly the shadow price of the second constraint can be calculated as 1 (please 

find it). 

 
 
3.4.5  Some important equations 
 
If the change in the RHS of the constraint leaves the current basis optimal (within the 

allowable RHS range), the following equations can be used to calculate new 

objective function value: 
 
for maximization problems 
 

new obj. fn. value = old obj. fn. value + (new RHS – old RHS) × shadow price  
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for minimization problems 
 

new obj. fn. value = old obj. fn. value – (new RHS – old RHS) × shadow price 

For Lindo example, as the allowable increases in RHS ranges are infinity for each 

constraint, we can increase RHS of them as much as we want. But according to 

allowable decreases, RHS of the first constraint can be decreased by 100 and that of 

second constraint by 1. 
 
Lets assume that new RHS value of the first constraint is 60. 
 
As the change is within allowable range, we can use the first equation (max. 

problem): 
 

znew = 1001 + ( 60 - 100 ) 10 = 601. 
 

 

3.4.6  Utilizing Simplex for Sensitivity 
 
In Dakota furniture example; x1, x2, and x3 were representing the number of desks, 

tables, and chairs produced. 
 
The LP formulated for profit maximization: 
 
max z = 60 x1  30 x2  20x3      

 8 x1 +  6 x2 + x3 + s1   = 48 Lumber 

 4 x1 + 2 x2 +1.5 x3  + s2  = 20 Finishing 

 2 x1 +1.5 x2 + .5 x3  + s3  =  8 Carpentry 

   x2    + s4 =  5 Demand 

The optimal solution was:        

z +5 x2   +10 s2 +10 s3 = 280  

 -2 x2  +s1 +2 s2 -8 s3 =  24  

 -2 x2 + x3   +2 s2 -4 s3 = 8  

+ x1   + 1.25 x2    -.5 s2 +1.5 s3 = 2  

  x2     + s4 = 5  
 
 
Analysis 1 
 
Suppose available finishing time changes from 20 20+ , then we have the system: 
 

z' =  60 x1' + 30 x2'   + 20 x3'     

8 x1' +  6 x2' + x3'   + s1'   = 48 

4 x1' + 2 x2' +1.5 x3' + s2'  = 20+ 

2 x1' +1.5 x2' + .5 x3'  + s3' = 8 

 + x2'    + s4' = 5 
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or equivalently:         

z' =  60 x1' + 30 x2'   + 20 x3'     

8 x1' +  6 x2' + x3'   + s1'   = 48 

4 x1' + 2 x2' +1.5 x3' +(s2'- )  = 20 

2 x1' +1.5 x2' + .5 x3'  + s3' = 8 

 + x2'    + s4' = 5 
 

That is z
’
, x1

’
, x2

’
, x3

’
,x4

’
,s1

’
,s2

’
- ,s3

’
,s4

’
 satisfy the original problem, and hence 

(1) Substituting in: 
 

z' +5 x2'   +10(s2'- ) +10 s3' = 280 

 -2 x2'  + s1' +2(s2'- ) -8 s3' = 24 

 -2 x2' + x3'  +2(s2'- ) -4 s3' = 8 

+ x1' +1.25 x2'   -.5(s2'- ) +1.5 s3' = 2 

 x2'    + s4'    = 5 

and thus        

z' +5 x2'   +10 s2' +10 s3' = 280+10 

 -2 x2'  +s1' +2 s2' -8 s3' = 24+2 

 -2 x2' + x3'  +2 s2' -4 s3' = 8+2 

+ x1' +1.25 x2'   -.5 s2'   +1.5 s3' = 2-.5 

 x2'    + s4'  =   5 
 
For -4 4, the new system maximizes z’. In this range RHS values are non-negative. 
 

 

As increases, revenue increases by 10 . Therefore, the shadow price of finishing 

labor is $10 per hr. (This is valid for up to 4 extra hours or 4 fewer hours). 

 
 
Analysis 2 
 
What happens if revenue from desks changes to $60+ ? For small revenue increases 

by 2 (as we are making 2 desks currently). But how large an increase is possible? 

 

The new revenue is: 
 

z' = (60+ )x1+30x2+20x3 = z+ x1 
 

= (280 - 5x2 - 10s2 - 10s3) +  (2 - 1.25x2 + .5s2 - 1.5s3)  
 

= 280 + 2 - (5 + 1.25 )x2 - (10-.5 )s2 - (10 + 1.5 )s3 

So the top line in the final system would be:  
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z' + (5 + 1.25 )x2 + (10 - .5 )s2 + (10 + 1.5 )s3 = 280 + 2 

Provided all terms in this row are we are still optimal. 
 
For -4 20, the current production schedule is still optimal. 
 

 

Analysis 3 
 
If revenue from a non-basic variable changes, the revenue is 

z
’
 = 60x1 + (30 + )x2 + 20x3 = z + x2 

= 280 - 5x2 - 10s2 - 10s3 +  x2  
 

= 280 - (5 -  )x2 - 10s2 - 10s3  
 
The current solution is optimal for 5. But when 5 or the revenue per table is 

increased past $35, it becomes better to produce tables. We say the reduced 

cost of tables is $5.00. 
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4. TRANSPORTATION PROBLEMS  
 

 

4.1 FORMULATING TRANSPORTATION PROBLEMS  
 
In general, a transportation problem is specified by the following information: 
 

A set of m supply points from which a good/service is shipped. Supply point i 

can supply at most si units.  
 

A set of n demand points to which the good/service is shipped. Demand point 

j must receive at least dj units.  
 

Each unit produced at supply point i and shipped to demand point j incurs a 

variable cost of cij.  
 
The relevant data can be formulated in a transportation tableau: 
 

 Demand Demand 
..... 

Demand 
SUPPLY  

 
point 1 point 2 point n  

    
 

Supply  c11  c12    c1n 
s1  

point 1 
        

 

         
 

Supply  c21  c22    c2n 
s2  

point 2 
        

 

         
 

..... 
         

 

         
 

          
 

Supply  cm1  cm2    cmn 
sm  

point m 
        

 

         
 

DEMAND d1 d2   dn  
 

 
 

If total supply equals total demand then the problem is said to be a balanced 

transportation problem. 

 
 
Let xij = number of units shipped from supply point i to demand point j 
 

 Decision variable xij: number of units shipped from supply point i to 
demand point j 



 
then the general LP representation of a transportation problem is 
 

min   i    j cij xij 
 

s.t.j xij < si (i=1,2, ..., m) Supply constraints 

i xij > dj (j=1,2, ..., n) Demand constraints 
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xij > 0 
 
If a problem has the constraints given above and is a maximization problem, it is still 

a transportation problem. 

 

 

4.1.1 Formulating Balanced Transportation Problem 

Example 1. Powerco 
 
Powerco has three electric power plants that supply the needs of four cities. Each 

power plant can supply the following numbers of kwh of electricity: plant 1, 35 million; 

plant 2, 50 million; and plant 3, 40 million. The peak power demands in these cities 

as follows (in kwh): city 1, 45 million; city 2, 20 million; city 3, 30 million; city 4, 30 

million. The costs of sending 1 million kwh of electricity from plant to city is given in 

the table below. To minimize the cost of meeting each city’s peak power demand, 

formulate a balanced transportation problem in a transportation tableau and 

represent the problem as a LP model. 
 

  To  

From City 1 City 2 City 3 City 4 

Plant 1 $8 $6 $10 $9 
Plant 2 $9 $12 $13 $7 

Plant 3 $14 $9 $16 $5 
 
 
 
Answer 
 
Representation of the problem as a LP model 
 
xij: number of (million) kwh produced at plant i and sent to city j. 
 

min z = 8 x11 + 6 x12 + 10 x13 + 9 x14 + 9 x21 + 12 x22 + 13 x23 + 7 x24 + 14 

x31 + 9 x32 + 16 x33 + 5 x34 
 

s.t. x11 + x12 + x13 + x14 < 35 (supply constraints) 

x21 + x22 + x23 + x24 < 50  

x31 + x32 + x33 + x34 < 40  

x11 + x21 + x31 > 45 (demand constraints) 

x12 + x22 + x32 > 20  

x13 + x23 + x33 > 30  

x14 + x24 + x34 > 30  

xij > 0 (i = 1, 2, 3; j = 1, 2, 3, 4)  
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Formulation of the transportation problem      

 

 City 1 City 2 City 3 City 4 SUPPLY 
 

Plant 1 
 8  6  10  9 

35  

        
 

      
 

Plant 2 
 9  12  13  7 

50  

        
 

      
 

Plant 3 
 14  9  16  5 

40  

        
 

      
 

DEMAND 45 20 30 30 125 
  

Total supply & total demand both equal 125: “balanced transport’n problem”. 
 
 
 

4.1.2  Balancing an Unbalanced Transportation Problem 
 
Excess Supply 
 
If total supply exceeds total demand, we can balance a transportation problem by 

creating a dummy demand point that has a demand equal to the amount of excess 

supply. Since shipments to the dummy demand point are not real shipments, they are 

assigned a cost of zero. These shipments indicate unused supply capacity. 
 
Unmet Demand 
 
If total supply is less than total demand, actually the problem has no feasible solution. 

To solve the problem it is sometimes desirable to allow the possibility of leaving 

some demand unmet. In such a situation, a penalty is often associated with unmet 

demand. This means that a dummy supply point should be introduced. 

 
 
Example 2. Modified Powerco for Excess Supply 
 
Suppose that demand for city 1 is 40 million kwh. Formulate a balanced 

transportation problem. 
 
Answer 
 
Total demand is 120, total supply is 125. 
 
To balance the problem, we would add a dummy demand point with a demand of 125 
 
– 120 = 5 million kwh. 
 
From each plant, the cost of shipping 1 million kwh to the dummy is 

0. For details see Table 4. 
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 Table 4. Transportation Tableau for Excess Supply  
 

 City 1 City 2 City 3 City 4 Dummy SUPPLY 
 

Plant 1 
 8  6  10  9  0 

35  

          
 

       
 

Plant 2 
 9  12  13  7  0 

50  

          
 

       
 

Plant 3 
 14  9  16  5  0 

40  

          
 

       
 

DEMAND 40 20 30 30 5 125 
 

 
 
Example 3. Modified Powerco for Unmet Demand 
 
Suppose that demand for city 1 is 50 million kwh. For each million kwh of unmet 

demand, there is a penalty of 80$. Formulate a balanced transportation problem. 
 
Answer 
 
We would add a dummy supply point having a supply of 5 million kwh representing 

shortage. 
 

 City 1 City 2 City 3 City 4 SUPPLY 
 

Plant 1 
 8  6  10  9 

35  

        
 

      
 

Plant 2 
 9  12  13  7 

50  

        
 

      
 

Plant 3 
 14  9  16  5 

40  

        
 

      
 

Dummy  80  80  80  80 
5  

(Shortage) 
        

 

         
 

DEMAND 50 20 30 30 130 
 

 

 

4.2 FINDING BFS FOR TRANSPORT’N PROBLEMS  
 
For a balanced transportation problem, general LP representation may be written as: 
 

min   i    j cij xij 

 

s.t. j xij = si (i=1,2, ..., m) Supply constraints 

 

i xij = dj (j=1,2, ..., n) Demand constraints 
 

xij > 0 
 
To find a bfs to a balanced transportation problem, we need to make the following 

important observation: 
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If a set of values for the xij’s satisfies all but one of the constraints of a balanced 

transportation problem, the values for the xij’s will automatically satisfy the other 

constraint. 
 
This observation shows that when we solve a balanced transportation, we may omit 

from consideration any one of the problem’s constraints and solve an LP having 

m+n-1 constraints. We arbitrarily assume that the first supply constraint is omitted 

from consideration. In trying to find a bfs to the remaining m+n-1 constraints, you 

might think that any collection of m+n-1 variables would yield a basic solution. But 

this is not the case: If the m+n-1 variables yield a basic solution, the cells 

corresponding to this set contain no loop. 
 
An ordered sequence of at least four different cells is called a loop if 
 

Any two consecutives cells lie in either the same row or same 

column No three consecutive cells lie in the same row or column  
 

The last cell in the sequence has a row or column in common with the first cell  
 

in the sequence 
 
There are three methods that can be used to find a bfs for a balanced transportation 

problem: 
 

1. Northwest Corner method  
 

2. Minimum cost method  
 

3. Vogel’s method  
 

 

4.2.1 Northwest Corner Method  
 
We begin in the upper left corner of the transportation tableau and set x11 as large as 

possible (clearly, x11 can be no larger than the smaller of s1 and d1). 
 

If x11=s1, cross out the first row of the tableau. Also change d1 to d1-s1. 

If x11=d1, cross out the first column of the tableau. Change s1 to s1-d1. 

If x11=s1=d1, cross out either row 1 or column 1 (but not both!).  

o  If you cross out row, change d1 to 0. 
 

o  If you cross out column, change s1 to 0. 
 
Continue applying this procedure to the most northwest cell in the tableau that does 

not lie in a crossed out row or column. 
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Eventually, you will come to a point where there is only one cell that can be assigned 

a value. Assign this cell a value equal to its row or column demand, and cross out 

both the cell’s row or column. 
 
A bfs has now been obtained. 
 

 

Example 1. 
 
For example consider a balanced transportation problem given below (We omit the 

costs because they are not needed to find a bfs!). 

 
5 

 
1 

 
3 

 
2 4 2 1 

 
Total demand equals total supply (9): this is a balanced transport’n problem. 

 

2 3 
 

1 
 

3 
 

X 4 2 1 
 

 

2 3 X 

  1 

  3 
 

X 1 2 1 
 

 

2 3 X 

 1 X 

  3 
 

X 0 2 1 
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2 3   X 
     

 1   X 
     

 0 2 1 3 
     

X 0 2 1  

 

NWC method assigned values to m+n-1 (3+4-1 = 6) variables. The variables chosen 

by NWC method can not form a loop, so a bfs is obtained. 

 
 
4.2.2  Minimum Cost Method 
 
Northwest Corner method does not utilize shipping costs, so it can yield an initial bfs 

that has a very high shipping cost. Then determining an optimal solution may require 

several pivots. 
 
To begin the minimum cost method, find the variable with the smallest shipping cost 

(call it xij). Then assign xij its largest possible value, min {si, dj}. 
 
As in the NWC method, cross out row i or column j and reduce the supply or demand 

of the noncrossed-out of row or column by the value of xij. 
 
Continue like NWC method (instead of assigning upper left corner, the cell with the 

minimum cost is assigned). See Northwest Corner Method for the details! 

 
 

Example 2. 
 

 2  3  5  6 
5  

        
 

     
 

 2  1  3  5 
10  

        
 

     
 

 3  8  4  6 
15  

        
 

     
 

12 8 4 6  
 

     
 

 2  3  5  6 
5  

        
 

     
 

 2  1  3  5 
2  

  

8 
     

 

        
 

 3  8  4  6 
15  

        
 

     
 

12 X 4 6  
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  MHN502E & ITY512E 2016-2017    
 

          
 

 2  3  5   6 
5  

         
 

      
 

 2  1  3   5 
X  

2 
 

8 
      

 

        
 

 3  8  4   6 
15  

         
 

      
 

10 X 4  6  
 

      
 

 2  3  5   6 
X  

5 
        

 

         
 

 2  1  3   5 
X  

2 
 

8 
      

 

        
 

 3  8  4   6 
15  

         
 

      
 

5 X 4  6  
 

      
 

 2  3  5   6 
X  

5 
        

 

         
 

 2  1  3   5 
X  

2 
 

8 
      

 

        
 

 3  8  4   6 
10  

5 
   

4 
 

6 
  

 

       
 

5 X 4  6  
 

 
 
4.2.3  Vogel’s Method 
 
Begin by computing for each row and column a penalty equal to the difference 

between the two smallest costs in the row and column. Next find the row or column 

with the largest penalty. Choose as the first basic variable the variable in this row or 

column that has the smallest cost. As described in the NWC method, make this 

variable as large as possible, cross out row or column, and change the supply or 

demand associated with the basic variable (See Northwest Corner Method for the 

details!). Now recomputed new penalties (using only cells that do not lie in a crossed 

out row or column), and repeat the procedure until only one uncrossed cell remains. 

Set this variable equal to the supply or demand associated with the variable, and 

cross out the variable’s row and column. 

 
 
 
 
 
 
 
 
 
 

51 



 
Example 3.         

 

       
Supply 

Row 
 

       
penalty  

        
 

  6  7  8 
10 7-6=1  

       
 

      
 

  15  80  78 
15 78-15=63  

       
 

      
 

Demand 15 5 5   
 

Column 
15-6=980-7=73 78-8=70 

  
 

penalty 
  

 

        
 

       
Supply 

Row 
 

       
penalty  

        
 

  6  7  8 
5 8-6=2  

   

5 
   

 

        
 

  15  80  78 
15 78-15=63  

       
 

      
 

Demand 15 X 5   
 

Column 
15-6=9 - 78-8=70 

  
 

penalty 
  

 

        
 

       
Supply 

Row 
 

       
penalty  

        
 

  6  7  8 
X -  

   

5 
 

5 
 

 

       
 

  15  80  78 
15 -  

       
 

      
 

Demand 15 X 0   
 

Column 
15-6=9 - - 

  
 

penalty 
  

 

        
 

      
 

  6  7  8 
X 

 
 

   

5 
 

5 
  

 

       
 

  15  80  78 
15 

 
 

 

15 
   

0 
  

 

       
 

Demand 15 X 0   
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4.3 THE TRANSPORTATION SIMPLEX METHOD 
 

 

Steps of the Method 
 
1. If the problem is unbalanced, balance it  
 
2. Use one of the methods to find a bfs for the problem  
 
3. Use the fact that u1 = 0 and ui + vj = cij for all basic variables to find the u’s and v’s 

for the current bfs.  
 
4. If ui + vj – cij ≤ 0 for all nonbasic variables, then the current bfs is optimal. If this is 

not the case, we enter the variable with the most positive ui + vj – cij into the basis 

using the pivoting procedure. This yields a new bfs. Return to Step 3.  

 

 

For a maximization problem, proceed as stated, but replace Step 4 by the following 

step: 
 

If ui + vj – cij ≥ 0 for all nonbasic variables, then the current bfs is optimal. 

Otherwise, enter the variable with the most negative ui + vj – cij into the basis using 

the pivoting procedure. This yields a new bfs. Return to Step 3. 

 
 
Pivoting procedure 
 
1. Find the loop (there is only one possible loop!) involving the entering variable  
 

(determined at step 4 of the transport’n simplex method) and some or all of the 

basic variables.  
 
2. Counting only cells in the loop, label those that are an even number (0, 2, 4, and 

so on) of cells away from the entering variable as even cells. Also label those that 

are an odd number of cells away from the entering variable as odd cells.  
 
3. Find the odd cell whose variable assumes the smallest value. Call this value . The 

variable corresponding to this odd cell will leave the basis. To perform the pivot, 

decrease the value of each odd cell by and increase the value of each even cell 

by . The values of variables not in the loop remain unchanged. The pivot is now 

complete. If = 0, the entering variable will equal 0, and odd variable that has a 

current value of 0 will leave the basis.  
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Example 1. Powerco 
 
The problem is balanced (total supply equals total demand). 
 
When the NWC method is applied to the Powerco example, the bfs in the following 

table is obtained (check: there exist m+n–1=6 basic variables). 
 

  City 1 City 2 City 3 City 4 SUPPLY 
 

 
Plant 1 

 8   6  10  9 
35  

 

35 
        

 

           
 

 
Plant 2 

 9   12  13  7 
50  

 

10 
  

20 
 

20 
   

 

         
 

 
Plant 3 

 14   9  16  5 
40  

      

10 
 

30 
 

 

          
 

DEMAND 45  20 30 30 125 
 

u1 = 0           
 

u1 + v1 = 8  yields v1 = 8        
 

u2 + v1 = 9  yields u2 = 1        
 

u2 + v2 = 12 yields v2 = 11      
 

u2 + v3 = 13 yields v3 = 12      
 

u3 + v3 = 16 yields u3 = 4        
 

u3 + v4 = 5  yields v4 = 1        
 

 
For each nonbasic variable, we now compute ĉij = ui + vj – 

cij ĉ12 = 0 + 11 – 6 = 5 ĉ13 = 0 + 12 – 10 = 2 ĉ14 = 0 + 

1 – 9 = -8 ĉ24 = 1 + 1 – 7 = -5 

 
 

 

ĉ31 = 4 + 8 – 14 = -2 
 

ĉ32 = 4 + 11 – 9 = 6 
 
Since ĉ32 is the most positive one, we would next enter x32 into the basis: Each unit of 

x32 that is entered into the basis will decrease Powerco’s cost by $6. 
 
The loop involving x32 is (3,2)-(3,3)-(2,3)-(2,2).   = 10 (see table)   

 

 City 1 City 2 City 3 City 4  SUPPLY 
 

Plant 1 
 8  6  10   9 

35  

35 
        

 

          
 

Plant 2 
 9  12  13   7 

50  

10 
 

20– 20+ 
   

 

      
 

Plant 3 
 14  9  16   5 

40  

  

 10– 30 
  

 

      
 

DEMAND 45 20 30 30  125 
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x33 would leave the basis. New bfs is shown at the following table: 

 

ui/vj 8  11  12 7  SUPPLY 
 

                  
 

0 
  8   6   10   9  

35  

 

35 
              

 

                 
 

1 
  9   12   13   7  

50  

 

10 
  

10 
   

30 
      

 

              
 

-2 
  14   9   16   5  

40  

     

10  30 
   

 

          
 

DEMAND 45  20  30 30 125 
 

ĉ12 = 5, ĉ13 = 2, ĉ14 = -2, ĉ24 = 1, ĉ31 = -8, ĉ33 = -6      
 

Since ĉ12 is the most positive one, we would next enter x12 into the basis.   
 

The loop involving x12 is (1,2)-(2,2)-(2,1)-(1,1).   = 10 (see table)   
 

  City 1  City 2 City 3 City 4 SUPPLY 
 

Plant 1 
 8   6   10  9 

35  

35– 
 

 

       
 

            
 

Plant 2 
 9   12   13  7 

50  

10+ 
 

10– 
 

30 
     

 

           
 

Plant 3 
 14   9   16  5 

40  

    

10 
 

 30 
  

 

           
 

DEMAND 45 20  30 30  125 
 

 

x22 would leave the basis. New bfs is shown at the following table: 

 

ui/vj 8 6 12 2 SUPPLY 
 

0 
 8  6  10  9 

 

25 
 

10 
     

 

       
 

1 
 9  12  13  7 

 

20 
   

30 
   

 

       
 

3 
 14  9  16  5 

 

  

10  30 
 

 

    
 

DEMAND 45 20 30 30 
 

 
ĉ13 = 2, ĉ14 = -7, ĉ22 = -5, ĉ24 = -4, ĉ31 = -3, ĉ33 = -1 

 
Since ĉ13 is the most positive one, we would next enter x13 into the basis. 

The loop involving x13 is (1,3)-(2,3)-(2,1)-(1,1). = 25 (see table) 

 

35 

 

50 

 

40 

 
125 
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 City 1 City 2 City 3 City 4 

 

Plant 1 
 8  6  10  9 

 

25– 10 
 

 

  
 

    
 

Plant 2 
 9  12  13  7 

 

20+ 
  

30– 
  

 

     
 

Plant 3 
 14  9  16  5 

 

  

10  30 
 

 

    
 

DEMAND 45 20 30 30 
  

x11 would leave the basis. New bfs is shown at the following table: 

 
SUPPLY 

35 

 
50 

 

40 

 

125 

 

ui/vj 6  6 10 2  SUPPLY 
 

            
 

0 
 8   6  10   9 

35  

  

10 
  

25 
    

 

         
 

3 
 9   12  13   7 

50  

45 
    

5 
    

 

          
 

3 
 14   9  16   5 

40  

  

10 
  

 30 
  

 

        
 

DEMAND 45  20 30 30  125 
 

 
ĉ11 = -2, ĉ14 = -7, ĉ22 = -3, ĉ24 = -2, ĉ31 = -5, ĉ33 = -3 

 
Since all ĉij’s are negative, an optimal solution has been obtained. 
 

 

Report 
 
45 million kwh of electricity would be sent from plant 2 to city 1. 
 
10 million kwh of electricity would be sent from plant 1 to city 2. Similarly, 10 million 

kwh of electricity would be sent from plant 3 to city 2. 
 
25 million kwh of electricity would be sent from plant 1 to city 3. 5 million kwh of 

electricity would be sent from plant 2 to city 3. 
 
30 million kwh of electricity would be sent from plant 3 to city 4 

and Total shipping cost is: 
 

z = .9 (45) + 6 (10) + 9 (10) + 10 (25) + 13 (5) + 5 (30) = $ 1020 
 
 
 

4.4 TRANSSHIPMENT PROBLEMS  
 
Sometimes a point in the shipment process can both receive goods from other points 

and send goods to other points. This point is called as transhipment point through 

which goods can be transhipped on their journey from a supply point to demand 

point. 
 
Shipping problem with this characteristic is a transhipment problem. 
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The optimal solution to a transshipment problem can be found by converting this 

transshipment problem to a transportation problem and then solving this 

transportation problem. 

 
 
Remark 
 
As stated in “Formulating Transportation Problems”, we define a supply point to be 

a point that can send goods to another point but cannot receive goods from any other 

point. 
 
Similarly, a demand point is a point that can receive goods from other points but 

cannot send goods to any other point. 

 
 

Steps 
 
1. If the problem is unbalanced, balance it  
 

Let s = total available supply (or demand) for balanced problem  
 
2. Construct a transportation tableau as follows  
 

A row in the tableau will be needed for each supply point and transshipment point 

A column will be needed for each demand point and transshipment point  
 

Each supply point will have a supply equal to its original supply Each 

demand point will have a demand equal to its original demand  
 

Each transshipment point will have a supply equal to “that point’s original supply + 

s”  
 

Each transshipment point will have a demand equal to “that point’s original 

demand + s”  
 
3. Solve the transportation problem  
 

 

Example 1. Bosphorus 
 
 
Bosphorus manufactures LCD TVs at two factories, one in Istanbul and one in 

Bruges. The Istanbul factory can produce up to 150 TVs per day, and the Bruges 

factory can produce up to 200 TVs per day. TVs are shipped by air to customers in 

London and Paris. The customers in each city require 130 TVs per day. Because of 

the deregulation of air fares, Bosphorus believes that it may be cheaper to first fly 

some TVs to Amsterdam or Munchen and then fly them to their final destinations. 
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The costs of flying a TV are shown at the table below. Bosphorus wants to minimize 

the total cost of shipping the required TVs to its customers. 
 
 €   To    

 From Istanbul Bruges Amsterdam Munchen London Paris 
 Istanbul 0 - 8 13 25 28 
 Bruges - 0 15 12 26 25 
 Amsterdam - - 0 6 16 17 
 Munchen - - 6 0 14 16 
 London - - - - 0 - 
 Paris - - - - - 0 
 
 
Answer: 
 

In this problem Amsterdam and Munchen are transshipment points. 

Step 1. Balancing the problem 
 

Total supply = 150 + 200 = 350 

Total demand = 130 + 130 = 260 
 

Dummy’s demand = 350 – 260 = 90 
 

s = 350 (total available supply or demand for balanced 

problem) Step 2. Constructing a transportation tableau 
 

Transshipment point’s demand = Its original demand + s = 0 + 350 = 350 

Transshipment point’s supply = Its original supply + s = 0 + 350 = 350 
 
 Amsterdam Munchen London Paris Dummy Supply 

 

             
 

Istanbul 
 8  13  25  28  0 

150  

           
 

            
 

Bruges 
 15  12  26  25  0 

200  

           
 

            
 

Amsterdam 
 0  6  16  17  0 

350  

           
 

            
 

Munchen 
 6  0  14  16  0 

350  

           
 

             
 

Demand 350 350 130 130 90  
 

Step 3. Solving the transportation problem      
 

 Amsterdam Munchen London Paris Dummy Supply 
 

            
 

Istanbul 
 8  13  25  28  0 

150  

130         

20  
 

           
 

Bruges 
 15  12  26  25  0 

200  

       

130  

70  
 

           
 

Amsterdam 
 0  6  16  17  0 

350  

220     

130      
 

           
 

Munchen 
 6  0  14  16  0 

350  

   

350        
 

            
 

Demand 350 350 130 130 90 1050 
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Report: 
 
Bosphorus should produce 130 TVs at Istanbul, ship them to Amsterdam, and 

transship them from Amsterdam to London. 
 
The 130 TVs produced at Bruges should be shipped directly to 

Paris. The total shipment is 6370 Euros. 

 

 

4.5 ASSIGNMENT PROBLEMS  
 
There is a special case of transportation problems where each supply point should 

be assigned to a demand point and each demand should be met. This certain class 

of problems is called as “assignment problems”. For example determining which 

employee or machine should be assigned to which job is an assignment problem. 

 
 
4.5.1  LP Representation 
 
An assignment problem is characterized by knowledge of the cost of assigning each 

supply point to each demand point: cij 
 
On the other hand, a 0-1 integer variable xij is defined as follows 
 

xij = 1 if supply point i is assigned to meet the demands of demand point j 

xij = 0 if supply point i is not assigned to meet the demands of point j 
 
In this case, the general LP representation of an assignment problem is 
 

min   i    j cij xij   

s.t.j xij = 1 (i=1,2, ..., m) Supply constraints 

i xij = 1 (j=1,2, ..., n) Demand constraints 

xij = 0 or xij = 1   
 

 

4.5.2  Hungarian Method 
 
Since all the supplies and demands for any assignment problem are integers, all 

variables in optimal solution of the problem must be integers. Since the RHS of each 

constraint is equal to 1, each xij must be a nonnegative integer that is no larger than 

1, so each xij must equal 0 or 1. 
 
Ignoring the xij = 0 or xij = 1 restrictions at the LP representation of the assignment 

problem, we see that we confront with a balanced transportation problem in which 

each supply point has a supply of 1 and each demand point has a demand of 1. 

 
 
 

59 



 

However, the high degree of degeneracy in an assignment problem may cause the 

Transportation Simplex to be an inefficient way of solving assignment problems. 
 
For this reason and the fact that the algorithm is even simpler than the Transportation 

Simplex, the Hungarian method is usually used to solve assignment problems. 

 
 

Remarks 
 
1. To solve an assignment problem in which the goal is to maximize the objective 

function, multiply the profits matrix through by –1 and solve the problem as a 

minimization problem.  
 
2. If the number of rows and columns in the cost matrix are unequal, the assignment 

problem is unbalanced. Any assignment problem should be balanced by the 

addition of one or more dummy points before it is solved by the Hungarian 

method.  

 
 
Steps 
 
1. Find the minimum cost each row of the m*m cost matrix.  
 
2. Construct a new matrix by subtracting from each cost the minimum cost in its row  
 
3. For this new matrix, find the minimum cost in each column  
 
4. Construct a new matrix (reduced cost matrix) by subtracting from each cost the 

minimum cost in its column  
 
5. Draw the minimum number of lines (horizontal and/or vertical) that are needed to 

cover all the zeros in the reduced cost matrix. If m lines are required, an optimal 

solution is available among the covered zeros in the matrix. If fewer than m lines 

are needed, proceed to next step  
 
6. Find the smallest cost (k) in the reduced cost matrix that is uncovered by the lines 

drawn in Step 5  
 
7. Subtract k from each uncovered element of the reduced cost matrix and add k to 

each element that is covered by two lines. Return to Step 5  

 
 

Example 1. Flight Crew 
 
 
Four captain pilots (CP1, CP2, CP3, CP4) has evaluated four flight officers (FO1, 

FO2, FO3, FO4) according to perfection, adaptation, morale motivation in a 1-20 

scale (1: very good, 20: very bad). Evaluation grades are given in the table. Flight 
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Company wants to assign each flight officer to a captain pilot according to these 
 
evaluations. Determine possible flight crews.   

 FO1 FO2 FO3 FO4 

CP1 2 4 6 10 

CP2 2 12 6 5 

CP3 7 8 3 9 

CP4 14 5 8 7 
 
 
Answer: 
 
Step 1. For each row in the table we find the minimum cost: 2, 2, 3, and 5 

respectively 
 
Step 2 & 3. We subtract the row minimum from each cost in the row. For this new 

matrix, we find the minimum cost in each column 
 

 0 2 4 8 
 0 10 4 3 
 4 5 0 6 
 9 0 3 2 
Column minimum 0 0 0 2 

 
Step 4. We now subtract the column minimum from each cost in the column 

obtaining reduced cost matrix. 
 

0 2 4 6 
0 10 4 1 
4 5 0 4 
9 0 3 0 

 
Step 5. As shown, lines through row 3, row 4, and column 1 cover all the zeros in the 

reduced cost matrix. The minimum number of lines for this operation is 3. Since 

fewer than four lines are required to cover all the zeros, solution is not optimal: we 

proceed to next step. 
 

0 2 4 6 
0 10 4 1 
4 5 0 4 
9 0 3 0 

 
Step 6 & 7. The smallest uncovered cost equals 1. We now subtract 1 from each 

uncovered cost, add 1 to each twice-covered cost, and obtain 
 

0 1 3 5 
0 9 3 0 
5 5 0 4 

10 0 3 0 
 
Four lines are now required to cover all the zeros: An optimal s9olution is available. 

Observe that the only covered 0 in column 3 is x33, and in column 2 is x42. As row 5 

can not be used again, for column 4 the remaining zero is x24. Finally we choose x11. 
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Report: 
 
CP1 should fly with FO1; CP2 should fly with FO4; CP3 should fly with FO3; and 

CP4 should fly with FO4. 

 
 

Example 2. Maximization problem 
 

 F G H I J 
A 6 3 5 8 10 
B 2 7 6 3 2 
C 5 8 3 4 6 
D 6 9 3 1 7 
E 2 2 2 2 8 

 
Report: 
 
Optimal profit = 36 
 
Assigments: A-I, B-H, C-G, D-F, E-J 
 
Alternative optimal sol’n: A-I, B-H, C-F, D-G, E-J 
 


