
UNIT-I 

BASIC CONCEPT OF SAMPLE SURVEYS 

A sample survey is a method of drawing an inference about the characteristics of a population 
or universe by observing a part of the population. For example, when one has to make an 
inference about a large lot and is not practicable to examine each individual member of the 
lot, one always takes help of sample surveys, that is to say one examines only a few member 
of the lot and, on the basis of this sample information, one makes decisions about the whole 
lot. Thus, a person wanting to purchase a basket of oranges may examine a few oranges from 
the basket and on that basis make his decision about the whole basket. 

Such methods are extensively used by government bodies throughout the world for assessing, 
different characteristics of national economy as are required for taking decisions regarding 
the impositions of taxes, fixation of prices and minimum wages etc. and for planning and 
projection of future economic structure, for estimation of yield rates and acreages under 
different crops, number of unemployed persons in the labour forces, construction of cost of 
living indices for persons in different professions and so on. 

Sample survey techniques are extensively used in market research surveys for assessing the 
preferential pattern of consumers for different types of products, the potential demand for a 
new product which a company wishes to introduce, scope for any diversification in the 
production schedule, and so on. 

Thus, sampling may become unavoidable because we may have limited resources in terms of 
money and / or man hours, or it may be preferred because of practical convenience. 

Sampling is first broadly classified as Subjective and Objective. 

Any type of sampling which depends upon the personal judgment or discretion of the sampler 
himself is called Subjective. But the sampling method which is fixed by a sampling rule or is 
independent of the sampler’s own judgment is Objective sampling. 

Objective Sampling 

    

Non-probabilistic Probabilistic and mixed 
 

In non-probabilistic objective sampling, there is a fixed sampling rule but there is no 
probability attached to the mode of selection, e.g. selecting every 5 th individual from a list. 
If, however, the selection of the first individual is made in such a manner that each of the first 
10 gets an equal chance of being selected, it becomes a case of mixed sampling, if for each 
individual there is a definite pre-assigned probability of being selected, the sampling is said 
to be probabilistic. 

Elementary unit or simply unit: It is an element or a group of elements, on which 
observations can be made or from which the required statistical information can be 
ascertained according to a well defined procedure, examples of unit are person, family, 
household, farm, factory, tree, a period of time such as an hour, day etc. 

Population: The collection of all units of a specified type in a given region at a particular 
point or a period of time is termed as a population or inverse. For example, a population of 
persons, families, farms, cattle, houses or automobiles in a region or a population of trees or a 
birds in a forest etc. 
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A population is said to be finite population or an infinite population according to as the 
number of units in it is finite or infinite. 

Sampling units: Elementary units or groups of such units, which, besides being clearly 
defined, identifiable and observable, are convenient for purposes of sampling, are called 
sampling units. For example, in a family budget enquiry, usually a family is considered as a 
sampling unit, since it is formed to be convenient for sampling for ascertaining the required 
information. In a crop survey, a farm or a group of farms owned or operated by a household 
may be considered as the sampling units. 

Sampling frame: For using sampling methods in the collection of data, it is essential to have 
a frame of all the sampling units belonging to the population to be studied with their proper 
identification particulars and such a frame is called the sampling frame. This may be a list of 
units with their identification particulars. 

As the sampling frame forms the basic material from which a sample is drawn, it should be 
insured that the frame contains all the sampling units of the population under consideration 
but excludes units of any other population. 

Sample: A sample is a subset of a population selected to obtain information concerning the 
characteristics of the population. In other words, one or more sampling units selected from a 
population according to some specified procedure are said to constitute a sample. 

Random sample: A random or probability sample is a sample drawn in such a manner that 
each unit in the population has a predetermined probability of selection. 

Estimator: An estimator is a statistic obtained by a specified procedure for estimating a 
population parameter. The estimator is a random variable, as its value differs from sample to 
sample and the samples are selected with specified probabilities. 

The particular value, which the estimator takes for a given sample, is known as an estimate. 

The difference between the estimator )(t  and the parameter )(  is called error. 

An estimator )(t  is said to be unbiased estimator for the parameter )(  if, )(tE , 
otherwise biased. Thus bias is given by  

 )()( tBtE   

The mean of squares of error taken from   is called mean square error )(MSE . 
Mathematically it is defined as  

 2)()(  tEtMSE . 

The MSE  may be considered to be a measure of accuracy with which the estimator t  
estimates the parameter  . 

The expected value of the squared deviation of the estimator from its expected value is 
termed sampling variance. It is a measure of the divergence of the estimator from its 
expected value and is given by 

 2)]([)( tEtEtV  . 

This measure of variability may be termed the precision of the estimator t . 

The relation between MSE  and sampling variance or between accuracy and precision can be 
obtained as  

 2)()(  tEtMSE 2])()([  tEtEtE  
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    222 )]([)(])([)]([ tBtVtEtEtE   , since 0)]([  tEtE . 

This shows that MSE  of t  is the sum of the sampling variance and the square of the bias. 
However, if t  is an unbiased estimator of  , the MSE  and sampling variance are the same. 

The square root of the sampling variance is termed as standard error of the estimator t . 

The ratio of the standard error of the estimator to the expected value of the estimator is 
known as relative standard error or the coefficient of variation of the estimator. 

Sample space: The collection of all possible sample, sequence, sets is called the sample 
space. 

Sampling design: The combination of the sample space and the associated probability 
measure is called a sampling design. For example, let 4N , 2n  and the probability of 
selection for different samples is 

Sample )2,1(  )3,1(  )4,1(  )3,2(  )4,2(  )4,3(  

Probability 6/1  6/1  6/1  6/1  6/1  6/1  
 

The above table gives the sampling design. 

Sampling and complete enumeration 

The total count of all units of the population for a certain characteristics is known as complete 
enumeration, also termed census survey. The money, man-power and time required for 
carrying out complete enumeration will generally be large and there are many situations with 
limited means where complete enumeration will not be possible, where recourse to selection 
of a few units will be helpful. When only a part, called sample, is selected from the 
population and examine, it is called sample enumeration or sample survey. 

A sample survey will usually be less expensive then a census survey and the desired 
information will obtain in less time. This does not imply that economy is the only 
consideration in conducting a sample survey. It is most important that a degree of accuracy of 
results is also maintained. Occasionally, the technique of sample survey is applied to verify 
that the results obtained from the census surveys. The main advantages or merits of sample 
survey over census survey may be outlined as follows: 

i) Reduced cost of survey, 

ii) Greater speed of getting results, 

iii) Greater accuracy of results, 

iv) Greater scope, and 

v) Adaptability 

Sample survey has its own limitations and the advantages of sampling over complete 
enumeration can be derived only if 

i) the units are drawn in a scientific manner 

ii) an appropriate sampling technique is used, and 

iii) the size of units selected in the sample is adequate. 

Sampling and non-sampling errors 
The error which arises due to only a sample (a part of population) being used to estimate the 
population parameters and draw inferences about the population is termed sampling error or 
sampling fluctuation. Whatever may be the degree of cautiousness in selecting a sample; 



 4 

there will always be a difference between the parameter and its corresponding estimate. This 
error is inherent and unavoidable in any and every sampling scheme. A sample with the 
smallest sampling error will always be considered a good representative of the population. 
This error can be reduced by increasing the size of the sample (number of units selected in 
the sample). In fact, the decrease in sampling error is inversely proportional to the square root 
of the sample size and the relationship can be examined graphically as below: 

 

 

 

 

 

 

When the sample survey becomes a census survey, the sampling error becomes zero. 

Non-sampling error 
The non-sampling errors primarily arise at the following stages: 

i) Failure to measure some of units in the selected sample 

i) Observational errors due to defective measurement technique 

iii) Errors introduced in editing, coding and tabulating the results. 

Non-sampling errors are present in both the complete enumeration survey and the sample 
survey. In practice, the census survey results may suffer from non-sampling errors although 

these may be free from sampling error. The non-sampling error is likely to increase with 
increase in sample size, while sampling error decreases with increase in sample size.  

 

SIMPLE RANDOM SAMPLING 

A procedure for selecting a sample of size n  out of a finite population of size N  in which 
each of the possible distinct samples has an equal chance of being selected is called random 
sampling or simple random sampling. 

We may have two distinct types of simple random sampling as follows: 

i) Simple random sampling with replacement )(srswr . 

ii) Simple random sampling without replacement )(srswor . 

Simple random sampling with replacement )(srswr  

In sampling with replacement a unit is selected from the population consisting of N  units, its 
content noted and then returned to the population before the next draw is made, and the 
process is repeated n  times to give a sample of n  units. In this method, at each draw, each of 

the N  units of the population gets the same probability 
N

1
 of being selected. Here the same 

unit of the population may occur more than once in the sample (order in which the sample 

Sample  
size 

Sampling error 
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units are obtained is regarded). There are nN  samples, and each has an equal probability 

nN

1
 of being selected. 

Note: If order in which the sample units are obtained is ignored (unordered), then in such 
case the number of possible samples will be 

)1( 2
1

2
1

1
1


  n

NNN
n

N CCCNC  . 

Simple random sampling without replacement )(srswor  

Suppose the population consist of N  units, then, in simple random sampling without 
replacement a unit is selected, its content noted and the unit is not returned to the population 
before next draw is made. The process is repeated n  times to give a sample of n  units. In this 
method at the r th drawing, each of the 1 rN  units of the population gets the same 

probability 
1

1

 rN
 of being included in the sample. Here any unit of the population cannot 

occur more than once in the sample (order is ignored). There are n
N C  possible samples, and 

each such sample has an equal probability 
n

N C

1
 of being selected. 

Theory of simple random sampling with replacement 

 N ,  population size. 

 n ,  sample size. 

 iY ,  value of the i th unit of the population. 

 iy ,  value of the i th unit of the sample. 
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Theorem:   In srswr , the sample mean y  is an unbiased estimate of the population mean 

Y  i.e. YyE )(  and its variance 
n

S
nN

N
yV

2
21

)(





 . 

Corollary: yNY ˆ  is an unbiased estimate of the population total Y  with its variance 

2
22 )1(

)ˆ( S
n

NN

n

N
YV





. 

Theorem:    In srswr , sample mean square 2s  is an unbiased estimate of the population 

variance 2  i.e. 22 )( sE . 

 

Theory of simple random sampling without replacement 

Theorem:    In srswor , sample mean y  is an unbiased estimate of the population mean 

Y  i.e. YyE )(  and its variance is 2)( S
nN

nN
yV 






 

 . 

Corollary: yNY ˆ  is an unbiased estimate of the population total Y  with its variance 

nSfNYV /)1()ˆ( 22  . 

Theorem:   In srswor , sample mean square 2s  is an unbiased estimate of the population 

mean square 2S  i.e. 22 )( SsE  . 

Property:   )(yV  under srswor  is less than the )(yV  under srswr . 

Theorem:   Let srswor  sample of size n  is drawn from a population of size N . Let 


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i
ii yT

1
  is a class of linear estimator of Y , where si '  are coefficient attached to 

sample values, then, 

i) The class T  is linear unbiased estimate class if 



n

i
i

1
1 . 

ii) The sample mean y  is the best linear unbiased estimate. 
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Consider, 
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We note that )(TV  will be minimum, if 



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 To determine i  such that )(TV  is minimum, consider the function 
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 Using the calculus method of Lagrange multipliers, we select i  and the constant   to 

minimize  . Differentiating   with respect to i  and equating to zero, we have 
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Case I) Random sampling with replacement 

On replacing Y  by P , Y  by NP , y  by 
n

a
p  , 2S  by 

1N

NPQ
 and 2  by PQ  in the 

expressions obtained in expectation and variance of the estimates of population mean and 
population total, we find 

i) PYyEpE  )()( . This shows that sample proportion p  is an unbiased estimate of 

population proportion P  and 
n

PQ

n
yVpV 

2
)()(


. 

ii) ANPpENNpEAE  )()()ˆ( , means that ANp ˆ  is an unbiased estimate of 
ANP   and 
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Theorem:   
1
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n
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pV )( . 
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Case II) Random sampling without replacement 

Results are: 

i) PYyEpE  )()( . This shows that sample proportion p  is an unbiased estimate of 

population proportion P  and  
1
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ii) ANPpENNpEAE  )()()ˆ( , means that Np  is an unbiased estimate of NP  and  
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Example:   For a population of size 430N  roughly we know that 19Y , 6.852 S  

with srs , what should be the size of sample to estimate Ŷ  with a margin of error 10% of Y
apart chance is 1 in 20. 

Solution: Margin of error in the estimate y  of Y  is given, i.e. 

 %10Yy  of Y  or %10|| Yy  of 9.1
10

19
Y , so that 

 05.0
20

1
]9.1||[Pr Yy , and 091678.91

)9.1(

6.85)96.1(
2

2

2

22
2

0 



d

SZ
n


. 

Therefore, 

75168.75
1 0

0 




N

n
n

n . 

Example: In the population of 676 petition sheets. How large must the sample be if the total 
number of signatures is to be estimated with a margin of error of 1000, apart from a 1 in 20 
chance? Assume that the population mean square to be 229. 

Solution: Let Y be the number of signature on all the sheets. Let Ŷ  is the estimate of Y . 
Margin of error is specified in the estimate Ŷ  of Y  as 

1000|ˆ| YY , so that, 05.0
20

1
]1000|ˆ|[Pr YY . 

We know that 

N

n
n

n
0

0

1
 ,  here,  01385.402229

1000

96.1676 22
2

0 





 














d

SZN
n


 

and hence 
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25209.252 n . 

Estimation of sample size for proportion 

a) When precision is specified in terms of margin of error:   Suppose size of the 
population is N  and population proportion is P . Let a srs  of size n  is taken and p  be 
the corresponding sample proportion and d  is the margin of error in the estimate p  of P
. The margin of error can be specified in the form of probability statement as 

 ]||[Pr dPp  or  1]||[Pr dPp              (1.6) 

As the population is normally distributed, so )](,[~ pVPNy , then )1,0(~
)(

N
pV

Pp
Z




. For the given value of   we can find a value Z  of the standard normal variate from 

the standard normal table by the following relation: 

 














2

)(

||
Pr Z

pV

Pp
 or   ])(||[Pr 2ZpVPp            (1.7) 

Comparing equation (1.6) and (1.7), the relation which gives the value of n  with the 
required precision of the estimate p  of P  is given by 

)(2 pVZd   or 
n

PQ

N

nN
ZpVZd 












1

)( 2
2

2
2/

2
 , as sampling is 

srswr . 

   
)1()1(

1 02

2
2
















Nn

nN
n

Nn

nN

d

PQZ
, where  

)(2

2
2

0 pV

PQ

d

PQZ
n 


         (1.8) 

or 1
1

0






n

N

n

nN

n

N
   

0

1
1

n

N

n

N 
  

or 

N

n
n

N

N

N

n
n

Nn

nN

n

N
N

n
0

0

0

0

0

0

0
1

1)1(1
1 













              (1.9) 

If N  is sufficiently large, then 0nn   

b) If precision is specified in terms of )( pV  i.e. VpV )(  (given). 

Substituting VpV )(  in relation (1.16) we get, 
V

PQ
n 0 , and hence n  can be obtained 

by relation (1.17). 

c) When precision is given in terms of coefficient of variation of p  

Let 

 
P

pV
epCV

)(
)(     2

2

)(
e

P

pV
 , or 22)( PepV     

     (1.18) 

Substitute equation (1.18) in relation (1.16), we get, 
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 





  1

11
22220 PePe

Q

Pe

PQ
n , and hence n  is given by the relation (1.9). 

Example:   In a population of 4000 people who were called for casting their votes, 50% 
returned to the poll. Estimate the sample size to estimate this proportion so that the marginal 
error is 5% with 95% confidence coefficient. 

Solution:  Margin of error in the estimate p  of P  is given by 

05.0||  Pp , then 05.0]05.0||[Pr  Pp . 

We know that 

38416.384
0025.0

5.05.0)96.1( 2

2

2
2/

0 



d

PQZ
n   

and hence, 

351498.350
)/(1 0

0 



Nn

n
n . 

Exercise:   In a study of the possible use of sampling to cut down the work in taking 
inventory in a stock room, a count is made of the value of the articles on each of 36 shelves 
in the room. The values to the nearest dollar are as follows. 

29, 38, 42, 44, 45, 47, 51, 53, 53, 54, 56, 56, 56, 58, 58, 59, 60, 60, 60, 60, 61, 61, 61, 62, 64, 
65, 65, 67, 67, 68, 69, 71, 74, 77, 82, 85. 

The estimate of total value made from a sample is to be correct within $200, apart from a 1 in 
20 chance. An advisor suggests that a simple random sample of 12 shelves will meet the 

requirements. Do you agree?   2138iY , and   6821312
iY . 

Solution:  It is given that 

  
i

iY 2138 ,  
i

iY 6821312 , and 36N , then 

5.134
36

2138
36682131

136

1

1

1 2
222 

































 

i
i YNY

N
S  

and 

 200|ˆ| YY ,  then, 05.0
20

1
]200|ˆPr[| YY . 

We know that 

N

n
n

n
0

0

1
 , here 7409.165.134

200

96.136 22
2/

0 





 








 S
d

ZN
n   

and therefore, 

 1242765.11 n . 

Exercise: The selling price of a lot of standing timber is UW , where U  is the price per unit 
volume and W  is the volume of timber on the lot. The number N  of logs on the lot is 
counted, and the average volume per log is estimated from a simple random sample of n  
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logs. The estimate is made and paid for by the seller and is provisionally accepted by the 
buyer. Later, the buyer finds out the exact volume purchased, and the seller reimburses him if 
he has paid for more than was delivered. If he has paid for less than was delivered, the buyer 
does not mention the fact. 

Construct the seller's loss function. Assuming that the cost of measuring n  logs is cn , find 
the optimum value of n . The standard deviation of the volume per log may be denoted by S  
and the fpc  ignored. 

Solution:  Let Ŵ  be the estimated total volume of the timber. The error in the estimate 

is WW ˆ . 

If 0ˆ  zWW  sellers loss is zero, i.e. 0)( zl . 

If 0ˆ  zWW  sellers loss is Uz , i.e. Uzzl )( . 

When fpc  is ignored nSNWV /)ˆ( 22 , then 












n

SN
WNW

22
,~ˆ , or 










n

SN
NWWz ,0~)ˆ( , so that 







































22

22

2
exp

2)(

1

2

1
exp

2)(

1
)(

SN

zn

nNSnNS

z

nNS
zf


 

Thus, the expected loss 

  

  










 0

22

2

2
exp

2)(

1
)()()()( dz

SN

zn

nNS
UzdzzfzlnL


 

      









 0

22

2

2
exp

2)(

1
dz

SN

zn

nNS
Uz


 

    














0 22

2

2
exp

2)(

1
dz

SN

zn

nNS
Uz


 

Put   t
SN

zn


22

2

2
, then dtdz

SN

zn


222

2
 or dt

n

SN
dzz

22
 . 

Therefore, 

 n

UNS
dte

n

UNS
dte

nNSn

SUN
nL tt

222)(

1
)(

00

22
 

   , as 1
0


  dte t . 

To determine the value of n , consider the function 

2/1

2
)()()(  n

UNS
ncnCnLn


 . 

Differentiate this function with respect to n , we get 

2/3

22

1
0 














n
UNS

c
n 


 or cn
UNS

 2/3

22 
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or 
UNS

c
n

222/3   or 

3/2

22 









c

UNS
n . 

Exercise: With certain populations, it is known that the observations iY  are all zero on a 

portion QN  of N  units )10(  Q . Sometimes with varying expenditure of efforts, these 

units can be found and listed, so that they need not be sampled. If 2  is the variance of iY  in 

the original population and 2
0  is the variance when all zeros are excluded, then show that 

2
2

2
2
0 Y

P

Q

P


 , where QP  1 , and Y  is the mean value of iY  for the whole 

population. 

Solution: Given NNPNP YYYYY ,,,,,, 121    (first NP  units not zero, and rest NQ  units 

which are all zero). Thus, 



N

i
iY

N
Y

1

1
, population mean, and 




NP

i
iNP Y

NP
Y

1

1
, 

0
1

1
 



NQ

i
iNQ Y

NQ
Y , also, 




NP

i
i

N

i
i YY

11
, and 




NP

i
i

N

i
i YY

1

2

1

2 ,so that NPYNPYN  ,

   or   Y
P

YNP
1

 . By definition, 





N

i
i

N

i
i YY

N
YY

N 1

22

1

22 1
)(

1 , or 



N

i
i YNYN

1

222 . 

Similarly, 



NP

i
NPi YNPYNP

1

222
0 . 

Thus, 

22
2

222
0

2 1
)( YNY

P
NPYNYNPPN NP   221

1
Y

P

Q
NY

P
N 













  . 

Therefore, 

 222 Y
P

Q
P o 






   or 2

2

2
2 Y

P

Q

Po 
 . 

Exercise: From a random sample of n  units, a random sub-sample of 1n  units is drawn 

without replacement and added to the original sample. Show that the mean based on )( 1nn   
units is an unbiased estimator of the population mean, and that ratio of its variance to that of 

the mean of the original n  units is approximately 
2

1

1

)/1(

/31

nn

nn




, assuming that the population 

size is large. 

Solution:Let the sample mean based on n , 1n , and 1nn   elements are denoted by ny , 1ny , 

and 1nny   respectively, and are defined as 



n

i
in y

n
y

1

1
, 




1

1
11

1 n

i
in y

n
y , and 
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1

1 1
1 nn

ynyn
y

nn
nn 


 . We have to show YyE nn  )(

1
, in this case the expectation is taken 

in two stages, 

i) when n  is fixed 

ii) over all expectation 

 )(
1

)(
11 1

1
nnnn ynynE

nn
yE 


 )]([

1
11

1
nyEnynE

nn nn 


  

       )(
1

1
1

nn ynynE
nn




 , since 1n  is a sub-sample of the sample of size n . 

       YYnYn
nn




 )(
1

1
1

. 

To obtain the variance 

 

2

1

12 1
11

)()( 














  Y

nn

ynyn
EYyEyV

nn
nnnn  

       2
112

1

])([
)(

1
1

YnnynynE
nn

nn 


  

       2
112

1

][
)(

1
1

YnynYnynE
nn

nn 


  

       2
11112

1

])([
)(

1
1

YnynynynYynE
nn

nnnn 


  

       2
112

1

)]()()[(
)(

1
1 nnn yynYynnE

nn



  

       ])()()[(
)(

1 22
1

22
12

1
1 nnn yyEnYyEnn

nn



 , as samples are 

drawn  independently. 

       ]})({)()[(
)(

1 22
1

2
12

1
1

nyyEEnyVnn
nn

nnn 


  

       































 2

1

2
1

2
12

1

11
)()(

)(

1
nn S

nn
EnyVnn

nn
 

       














 



 2

1

12
1

2
12

1

)()(
)(

1
S

nn

nn
nyVnn

nn
n  

 2
2

1

112112
12

1 )(

)(
)(

)(
)()(

)(

1
S

nnn

nnn
yVS

n

nnn
yVnn

nn
nn








 




 . 



 15

Therefore, 

 2
22

1

112
2

1

11

/)(

)(
1

)()(

)(
1

)(

)(
1 S

nSnnn

nnn
S

yVnnn

nnn

yV

yV

nn

nn












 

        
2

1

2
111

2
1

2

2
1

11
2

1

)(

2

)(

)()(

nn

nnnnnnn

nn

nnnnn









  

        
2

1

1
2

1

1
2

)/1(

)/3(1

)(

3

nn

nn

nn

nnn









 . 

Exercise: A simple random sample of size 21 nnn   with mean y  is drawn from a finite 

population, and a simple random subsample of size 1n  is drawn from it with mean 1y . Show 
that  

i) )]/1()/1[()( 21
2

21 nnSyyV  , where 2y  is mean of the remaining 2n  units in the 
sample, 

ii) )]/1()/1[()( 1
2

1 nnSyyV  , 

iii) 0),( 1  yyyCov . 

 Repeated sampling implies repetition of the drawing of both the sample and subsample. 

Solution: 

i) In repeated sampling the given procedure is equivalent to draw subsamples of sizes 1n  

and 2n  independently, thus 

 )()()( 2121 yVyVyyV  , since 0),( 21 yyCov  

      )]/1()/1[( 21
2 nnS  , ignoring fpc . 

ii) 
21

2211

nn

ynyn
y




    
21

2211
11 nn

ynyn
yyy




  

 or 
n

yyn

nn

ynynynyn
yy

)( 212

21

22111211
1







 . 

 Therefore, 

 2

21
2

2
2

212

2
2212

1
11

)(
)(

)( S
nnn

n
yyV

n

n

n

yyn
VyyV 















 

  

        2

1

22

21

21
2

2
2 S

nn

n
S

nn

nn

n

n








 
 2

1

2

1

1 11
S

nn
S

nn

nn











 . 

iii) )()()]([),( 111 yyEyEyyyEyyyCov   

      0)( 2
1  YyyyE )()( 2

1 yEyyE     (1) 

 Consider 
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 






 






 
 21

22
1

1
1

2211
1)( yy

n

n
y

n

n
Ey

n

ynyn
EyyE  

     )()()( 21
22

1
1 yEyE

n

n
yE

n

n
  

   222
1

1 ])([ Y
n

n
YyV

n

n
 222

1

2
1 Y

n

n
Y

n

S

n

n











  

    2
2

2221
2

Y
n

S
Y

n

n
Y

n

n

n

S
        (2) 

 Now 

 22 )()( YyEyV   or 2
2

22 )()( Y
n

S
YyVyE     (3) 

 In view of equations (1), (2), and (3), we get 

  0),( 2
2

2
2

1 




















 Y

n

S
Y

n

S
yyyCov . 

Exercise: A population has three units 21,UU  and 3U  with variates 21,YY  and 3Y  

respectively. It is required to estimate the population total Y  by selecting a sample of two 
units. Let the sampling and estimation procedures be as follows: 

Sample )(s  )(sP  Estimator t  Estimator t  

),( 21 UU  2/1  21 2YY   2
121 2 YYY   

),( 31 UU  2/1  31 2YY   2
131 2 YYY   

 

Prove that both t  and t  are unbiased for Y  and find their variances. Comment on the 
estimators. 

Solution: By definition 

 YYYYYtpttE
i

ii   )22(
2

1
)()( 3121 . 

This shows that estimator t  is unbiased for Y . 

 )4444(
2

1
])2()2[(

2

1
)( 31

2
3

2
121

2
2

2
1

2
31

2
21

2 YYYYYYYYYYYYtE   

      3121
2

3
2

2
2

1 2222 YYYYYYY  . 

Therefore, 

 2
3213121

2
3

2
2

2
1

22 )(2222)]([)()( YYYYYYYYYYtEtEtV   

    2
3232

2
3

2
2 )(2 YYYYYY  . 

Similarly, 
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 YYYYYYYtpttE
i

ii   )22(
2

1
)()( 2

131
2

121 , hence, t  is unbiased for Y . 

 ])2()2[(
2

1
)( 22

131
22

121
2 YYYYYYtE   

   3
1

4
1

2
2212

2
1

2
1

3
1

4
1 24442(

2

1
YYYYYYYYYY   

    )444 2
3313

2
1

2
1 YYYYYY   

   2
3313

2
1

2
2212

2
1

2
1

4
1 222222 YYYYYYYYYYYY  . 

Therefore, 

 22 )]([)()( tEtEtV   

     2
321

2
3313

2
1

2
2212

2
1

2
1

4
1 )(222222 YYYYYYYYYYYYYYY   

     )22()( 32
2

1
2

1
2

32 YYYYYY   

     )22()( 32
2

1
2

1 YYYYtV  . 

We conclude that both linear estimator t  and quadratic estimator t  are unbiased; among 
which estimator has minimum variance depends on the variate values. 
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UNIT-II 

SRATIFIED RANDOM SAMPLING 

The precision of an estimator of the population parameters (mean or total etc.) depends on the 
size of the sample and the variability or heterogeneity among the units of the population. If 
the population is very heterogeneous and considerations of cost limit the size of the sample, it 
may be found impossible to get a sufficiently precise estimate by taking a simple random 
sample from the entire population. For this, one possible way to estimate the population mean 
or total with greater precision is to divide the population in several groups (sub-population or 
classes, these sub-populations are non-overlapping) each of which is more homogenous than 
the entire population and draw a random sample of predetermined size from each one of the 
groups. The groups, into which the population is divided, are called strata or each group is 
called stratum and the whole procedure of dividing the population into the strata and then 
drawing a random sample from each one of the strata is called stratified random sampling. 
For example, to estimate the average income per household, it may be appropriate to group 
the households into two or more groups (strata) according to the rent paid by the households. 
The households in any stratum so form are likely to be more homogeneous with respect to 
income as compared to the whole population. Thus, the estimated income per household 
based on a stratified sample is likely to be more precise than that based on a simple random 
sample of the same size drawn from the whole population. 

Principal reasons for stratification 

 To gain in precision, divide a heterogeneous population into strata in such a way that each 
stratum is internally homogeneous. 

 To accommodate administrative convenience (cost consideration), fieldwork is organized 
by strata, which usually results in saving in cost and effort. 

 To obtain separate estimates for strata. 

 We can accommodate different sampling plan in different strata. 

 We can have data of known precision for certain subdivisions treating each subdivision as 
a population in its own right. 

Notations 

Let the population, consisting of N  units is first divided into k  strata (sub-populations) of 
size kNNN ,,, 21  . These sub-populations are non-overlapping such that 

NNNN k  21 . A sample is drawn (by the method of srs ) from each stratum 

(group or sub-population) independently, the sample size within the i th stratum being in , 

),,2,1( ki   such that nnnn k  21 . The following symbols refer to stratum i . 

 iN ,  total number of units. 

 in ,  number of units in sample. 

 
i

i
i N

n
f  ,  sampling fraction in the stratum. 

 
N

N
W i

i  ,  stratum weight. 
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 ijy , value of the characteristic under study for the j th unit in the i th stratum, 

iNj ,,2,1  . 

 



iN

j
ij

i
i y

N
Y

1

1
,  mean based on iN  units (stratum mean). 

 



in

j
ij

i
i y

n
y

1

1
,  mean based on in  units (sample mean). 

 



iN

j
iij

i
i Yy

N 1

22 )(
1 ,  variance based on iN  units (stratum variance). 

 






iN

j
iij

i
i Yy

N
S

1

22 )(
1

1
,  mean square based on iN  units (stratum mean square). 

 






in

j
iij

i
i yy

n
s

1

22 )(
1

1
,  sample mean square based on in  units. 

 
 


k

i
ii

k

i

N

j
ij YNyY

i

11 1

,  population total. 

 



k

i
ii

k

i
ii YWYN

NN

Y
Y

11

1
,  over all population mean. 

Theorem: For stratified random sampling, wor , if in every stratum the sample estimate iy  is 

an unbiased of iY , and samples are drawn independently in different strata, then 





k

i
iist yWy

1

 is an unbiased estimate of the over all population mean Y  and its variance is 

22

1

11
)( ii

k

i ii
st SW

Nn
yV 










 . 

Proof: Since sampling within each stratum is simple random sampling, i.e. ii YyE )( , it 

follows that 

 YYWyEWyWEyE
k

i
ii

k

i
ii

k

i
iist 









 

 111

)()( . To obtain the variance, we have 

 
2

1

2

11

2 )}({)]([)(



































 



k

i
iii

k

i
ii

k

i
iiststst yEyWEyWEyWEyEyEyV  
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





























 







 )}({)}({)}({
,1

22
iiii

k

ii
ii

ii

k

i
iii yEyyEyWWEyEyWE  

       ),()(
1 1 1

2
iii

k

i

k

i

k

ii
iii yyCovWWyVW 

  
   . 

Since samples are drawn independently in different strata, all covariance terms vanishes, then 

 22

11

2 11
)()( ii

k

i ii

k

i
iist SW

Nn
yVWyV 










 , as srswor  within each stratum. 

Alternative expressions of )( styV  

i) iiii

k

i
iii

i
k

i i

ii
ii

k

i ii
st nSnNN

N
nS

N

N

N

nN
SW

Nn
yV /)(

1
/

11
)( 2

1
2

2
2

2

1

22

1








 









 


. 

ii) 














k

i i

ii
iii

i

i
k

i
iiiii

k

i
ist n

Sf
WnS

N

n
N

N
nSnNN

N
yV

1

2
22

1

2
2

2

1
2

)1(
/1

1
/)(

1
)( . 

Corollary: stst yNY ˆ  is an unbiased estimate of the population total Y  with its variance 

22

1

11
)ˆ( ii

k

i ii
st SN

Nn
YV 










 . 

Proof:    By definition 

 YYNyENYE stst  )()ˆ( , and 

 22

1

22

1

22 1111
)()ˆ( ii

k

i ii
ii

k

i ii
stst SN

Nn
SW

Nn
NyVNYV 



















  

       ii

k

i
iiii

k

i
iii nSfNnSnNN /)1(/)( 2

1

22

1



 . 

Remarks 

a) If iN  are large as compared to in  (if the sampling fractions 
i

i
i N

n
f   are negligible in all 

strata), then, 

i) 



k

i
iii

k

i
iiist nSN

N
nSWyV

1

22
2

1

22 /
1

/)( . 

ii) 



k

i
iiist nSNYV

1

22 /)ˆ( . 
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b) If in every stratum 
N

N

n

n ii   i.e. i
i

i nW
N

N
nn  , the variance of sty  reduces to 

 











 








 


k

i
iiii

k

i i

ii
iii

k

i i

ii
st SW

n

f
nSW

N

nWN
nSW

N

nN
yV

1

22

1

22

1

1
//)( . 

c) If in every stratum 
N

N

n

n ii  , and the variance of sty  in all strata have the same value 2S

, then the result reduces to 22

1

11
)( S

n

f
SW

n

f
yV

k

i
ist





 


,  since 1

1




k

i
iW . 

Estimation of variance 

If a simple random sample is taken within each stratum, then an unbiased estimator of 2
iS , is 








in

j
iij

i
i yy

n
s

1

22 )(
1

1
, and an unbiased estimator of variance sty  is 

  iiii

k

i
iii

k

i ii
stst nsnNN

N
sW

Nn
yvyV /)(

111
)()(ˆ 2

1
2

22

1









 


 

   



k

i
iiii nsfW

1

22 /)1( . 

Alternative form for computing purposes 

  
 


k

i

ii
k

i i

ii
k

i

k

i i

ii

i

ii
st N

sW

n

sW

N

sW

n
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yV

1

2

1

22

1 1

2222
)( . 

Theorem: If stratified random sampling is with replacement, then 



k

i
iist yWy

1

 is an 

unbiased estimate of population mean Y  and its variance is 



k

i
iiist nSWyV

1

22 /)( . 

Proof:  As in stratified random sampling, wor , YyE st )( , and  

 ii

k

i
iii

i

i
k

i
iii

k

i
i

k

i
iist nSWnS

N

N
WnWyVWyV //

1
/)()( 2

1

22

1

22

1

2

1

2 









 
   

Corollary: 



k

i
ii

k

i
iistst yNyWNyNY

11

ˆ  is an unbiased estimate of the population 

total Y  and its variance is 

 



k

i
iii

k

i
iiiststst nSNnSWNyVNyNVYV

1

22

1

2222 //)()()ˆ( . 
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Choice of sample size in different strata 

There are three methods of allocation of sample sizes to different strata in a stratified 
sampling procedure. These are 

i) Equal allocation. 

ii) Proportional allocation. 

iii) Optimum allocation. 

Equal allocation:    In this method, the total sample size n  is divided equally among all 
the strata, i.e. for i th stratum knni / . In practice, this method is not used except when 

the strata sizes are almost equal. 

Proportional allocation:   This procedure of allocation is very common in practice 
because of its simplicity. When no other information except iN , the total number of units in 

the i th stratum, is available, the allocation of a given sample of size n  to different strata is 
done in proportion to their sizes, i.e. in the i th stratum ii Nn   or ii Nn  , where   is 

the constant of proportionality, and 

 



k

i
i

k

i
i Nn

11

 , or 
N

n
 ,     iii nWN

N

n
n  . 

)( styV  Under proportional allocation 

 2

1

22

1

11
)( ii

k

i i

i

i

i
ii

k

i ii
propst SW

N

W

nW

W
SW

NnW
yV 



















  

      










 

k

i
ii

k

i
ii SW

n

f
SW

Nn 1

2

1

2 111
. 

Note:   If the variances in all strata have the same value, 2S  (say), then 

 21
)( S

n

f
yV propst


 , as 1

1




k

i
iW . 

Alternative expressions of propstyV )(  

 










 







 

k

i
iii

k

i

i
k

i
iipropst SN

nN

nN
S

N

N

nN

nN
SW

Nn
yV

1

2
2

2

11

211
)( . 

Optimum allocation:    In this method of allocation the sample sizes in  in the respective 

strata are determined with a view to minimize )( styV  for a specified cost of conducting the 

sample survey or to minimize the cost for a specified value of )( styV . The simplest cost 

function is of the form 

 Cost 



k

i
ii nccC

1
0 , where the overhead cost 0c  is constant and ic  is the average 

cost of surveying one unit in the i th stratum 
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 CcncC
k

i
ii  

1
0  (say)                (2.1) 

and    












k

i i

ii
k

i i

ii
ii

k

i ii
st N

SW

n

SW
SW

Nn
yV

1

22

1

22
22

1

11
)( , so that 

 V
n

SW

N

SW
yV

k

i i

ii
k

i i

ii
st  

 1

22

1

22
)(  (say)               (2.2) 

where C  and V   are function of in . Choosing the in  to minimize V  for fixed C  or C  for 

fixed V are both equivalent to minimizing the product 

 






















 



k

i
ii

k

i i

ii cn
n

SW
CV

11

22
 

It may be minimized by use of the Cauchy-Schwartz inequality, i.e. if ia , ib , ki ,,2,1   are 

two sets of k  positive numbers, then 

 

2

11

2

1

2


































k

i
ii

k

i
i

k

i
i baba , equality holds if and only if 

i

i

a

b
 is constant for all i . 

Taking  0/  iiii nSWa , and 0 iii cnb , then 

 

2

11

2

1

2 )()/( 









 



k

i
iii

k

i
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k

i
iii cSWcnnSWCV . 

Thus, no choice of in  can make CV   smaller than 

2

1













i

k

i
ii cSW . This minimum value 

occurs when 
i

i

a

b
constant, say  . 

  











ii

ii

ii

i
ii

i

i

SW

cn

SW

n
cn

a

b
 or 

i

ii
i

c

SW
n               (2.3) 

    iiii cSWn / , this allocation is known as optimum allocation. 

Taking summation on both the sides of equation (2.3), we get 

 



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i
i
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  or 





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i
iii cSW

n

1
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 , and hence, 
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cSW
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/

/

/

/
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


 .               (2.4) 
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Alternative method 

To determine in  such that )( styV  is minimum and cost C  is fixed, consider the function 

 









 


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i
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k
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ii Cncc
N
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n

SW

1
0

1

22

1

22
 , where   is some unknown 

constant. 

Using the calculus method of Lagrange multipliers, we select in , and the constant   to 

minimize  . Differentiating   with respect to in , and equating to zero, we have 

i
i

ii

i
c

n

SW

n






2

22
0  or 

i
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c
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n


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     

         (23a) 

  iiii cSWn /  or  iiii cSNn / . 

Taking summation on both the sides of equation (2.3a), we get 
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
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
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n
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/
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


               (2.4a) 

The total sample size n  required for the optimum sample sizes within strata. The solution for 
the value of n  depends on whether the sample is chosen to meet a specified total cost C  or to 
give a specified variance V  for sty . 

i) If cost is fixed, substitute the optimum values of in  in (cost function) equation (2.1) and 

solve for n  as 

  










k

i
k

i
iii

iii
ik

i
iii

iii
k

i

k

i
ii

cSW

cSW
nc

cSW

cSW
nnccC

1

11

11
0

//

/
 

     
 






k

i
iiik

i
iii

cSW

cSW

cC
n

1

1

0 / . 

Hence, 
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ii) If V is fixed, substitute the optimum in  in equation (2.2), we get 
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Remark 

An important special case arises if cci  , that is, if the cost per unit is the same in all strata. 

The cost becomes cncnccC
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0 , and optimum allocation for fixed cost reduces 

to optimum allocation for fixed sample size. The result in this case is as follows: 
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Relative precision of stratified with simple random sampling 

Here, we shall make a comparative study of the usual estimators under simple random 
sampling, without stratification and stratified random sampling employing various schemes 
of allocation i.e. proportional and optimum allocations. This comparison shows how the gain 
due to stratification is achieved.  
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Remark 

In comparing the precision of stratified with un-stratified random sampling, it was assumed 
that the population values of stratum means and variances were known. 

Estimation of the gain in precision due to stratification 

It is sometimes of interest to examine, from a survey, whether the mode of stratification has 
been effective in estimating the population mean with increased gain in precision relative to 
simple random sampling without replacement. The data available from the sample are the 
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The estimate of the relative gain in precision due to stratification is thus obtained by  
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Exercise:   In a population with 6N  and 2k  the values of ijy  are 0, 1, 2 in stratum 

1 and 4, 6, 11 in stratum 2. A sample with 4n  is to be taken. 

i) Show that the optimum in  under Neyman allocation are 11 n  and 32 n . 

ii) Compute the estimate sty  for every possible sample under optimum allocation and 

proportion allocation. Show that the estimates are unbiased. Hence find )( styV  directly 

under optimum and proportion allocation and verify that )( styV  under optimum agrees 

with the formula 22
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2
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Solution: Given 6N , 4n , 2k , and 321  NN , also 11 Y , and 72 Y . 

i) Under Neyman allocation, 
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
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, where 

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
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Therefore, 
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1 


i

ii SN
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nn , and  3221

2 

i

ii SN

SN
nn . 

ii) Possible samples under optimum allocation will be 33
3

1
3  CC , since 11 n , 32 n  

and 31 N , 32 N  

Samples Means 

I II 1y  2y  sty  

0 (4, 6, 11) 0 7 3.5 

1 (4, 6, 11) 1 7 4.0 

2 (4, 6, 11) 2 7 4.5 
 

YyE st  43/)5.40.45.3()( , thus sty  is unbiased estimate of Y  under 

optimum allocation. 

1667.03/])45.4()40.4()45.3[()( 222 styV . 
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Possible samples under proportional allocation will be 92
3

2
3  CC , since ii nWn  , so 

that 21 n , 22 n . 

Samples Means 

I II 1y  2y  sty  

(0, 1) (4, 6) 0.5 5.0 2.75 

(0, 1) (4, 11) 0.5 7.5 4.00 

(0, 1) (6, 11) 0.5 8.5 4.50 

(0, 2) (4, 6) 1.0 5.0 3.00 

(0, 2) (4, 11) 1.0 7.5 4.25 

(0, 2) (6, 11) 1.0 8.5 4.75 
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(1, 2) (4, 6) 1.5 5.0 3.25 

(1, 2) (4, 11) 1.5 7.5 4.50 

(1, 2) (6, 11) 1.5 8.5 5.00 
 

 YyE st  4)00.550.425.375.425.400.350.400.475.2(
9

1
)(  

 Therefore, sty  is unbiased estimate of Y  under proportion allocation. 

 583.0])400.5()400.4()475.2[(
9

1
)( 222  styV . 

By formula 
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
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  



k
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Exercise:The households in a town are to be sampled in order to estimate the average amount 
of assets per household. The households are stratified into a high-rent and low-rent stratum. A 
house in the high-rent stratum is thought to have about nine times as much assets as one in 
the low-rent stratum, and iS  is expected to be proportional to the square root of the stratum 

mean. There are 4000 households in the high-rent stratum and 20, 000 in the low-rent 
stratum. 

i) Distribute a sample of 1000 households between the two strata. 

ii) If the object is to estimate the difference between assets per household in the two strata, 
obtain the optimum sample sizes to be distributed in two strata such that 100021  nn . 

Solution: 

Given 40001 N , 000,202 N , 
6

1
1 W , and 

6

5
2 W . 

Also, 

 21 9YY  ,   11 YS  , 11 YAS   

and    22 YS  , 22 YAS  . 

i) Since total sample size is fixed i.e. 1000n , then the optimum value (under Neyman 

allocation) 





k

i
ii

ii
i

SW

SW
nn

1

, so that 

 375
)(6/5)3(6/1

)3(6/1
1000

22

2

2211

11
1 







YAYA

YA

SWSW

SW
nn , and 6252 n . 

ii) Unbiased estimate of )( 21 YY   is )( 21 yy  , therefore, 

0)()()( 2121  yVyVyyV , as sampling from strata are independent. 
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 terms independent of 1n     and 2n . 

Now our problem is to find 1n  and 2n  such that variance of the estimate is minimum 

subject to condition 100021  nn . 

To determine the optimum value of in , consider the function 

 )1000( 21
2

2
2

1

2
1  nn

n

S

n

S
 .       (1) 

where   is some unknown constant. Using the calculus method of Lagrange multipliers, 
we select in  and the constant   to minimize  . 

Differentiating equation (1) with respect to in , we have 

 
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In view of equations (2) and (3), we get 
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But from given values, we have 

 3
3

2

2

2

1 
YA

YA

S

S
 21 3SS  , and hence, 

 3
3

2

2

2

1 
S

S

n

n
   21 3nn  . 

Therefore, 

 10003 22  nn  2502  n    and    7501 n . 

Exercise: A sampler has two strata with relative sizes 1W , 2W . He believes that 1S , 2S  can 

be taken as equal but thinks that 2c  may be between 12c  and 14c . He would prefer to use 
proportional allocation but does not wish to incur a substantial increase in variance compared 
with optimum allocation. For a given cost 2211 ncncC  , ignoring the fpc , show that 

2
2211

2211

)()(

)(

cWcW

cWcW

yV

yV

optst

propst




 . 

If 21 WW  , compute the relative increases in variance from using proportional allocation 

when 4,2/ 12 cc . 
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Solution:   We know that )( styV  under proportional allocation, ignoring fpc  is 

 22
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2
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1

2 1
)(
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n
SWSW

n
SW

n
yV

k

i
iipropst  


, as SSS  21  (say), and  

            
         121 WW . 

Under proportional allocation 

11 nWn  , and 22 nWn  , then )( 22112211 cWcWncnWcnWC  . So that 

2211 cWcW

C
n


 , and 2

2211 )(
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)( ScWcW
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yV propst  . 

Note that, )( styV  under optimum allocation, ignoring fpc  is 
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The relative increase in variance from using proportional allocation is given by 

1
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If 21 WW  , we have 5.021 WW , since 121 WW . Thus 

1
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i) When 2
1

2 
c

c
 or 12 2cc  , then 
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ii) When 4
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c
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11111.01
)21(5.0

5
1

)2(5.0

4
2

1

1
2

11

11 








c

c

cc

cc
RI . 

Exercise: A sampler proposes to take a stratified random sample. He expects that his field 
costs will be of the form  ii nc . His advance estimates of relevant quantities for two strata 

are as follows: 
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Stratum iW  iS  ic  

1 0.4 10 4 

2 0.6 20 9 
 

i) Find the values of 
n

n1  and 
n

n2  that minimize the total cost for a given value of )( styV . 

ii) Find the sample size required, under this optimum allocation, to make 1)( styV , if fpc  

is ignored. 

iii) Obtain the total fixed cost. 

Solution: 

i) The optimum value of in  for given variance when cost is minimum are given by 





k

i
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ii) We know that 
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 , if fpc  is ignored, then )( styV  reduces to 
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It is given that 1)( styV , so that, 264n . 

Therefore, 

 88
31 
n

n , and 1762 n . 

Or 

We know that the optimum value of in  for given variance are 






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i
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i
iiiiii

i
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cSWcSW

n
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For large N , and 1)( styV , it reduces to 
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
i

iiiiiii cSWcSWn )/( . 

Therefore, after simplification, 881 n , and 1762 n . 

iii) Cost function is given as  ii nc , then,   19362211 ncncnc ii . 

Exercise:   After the sample in previous exercise is taken, the sampler finds that his field 
costs were actually $2 per unit in stratum 1 and $12 in stratum 2. 

i) How much greater is the field cost than anticipated? 

ii) If he had known the correct field costs in advance, could he have attained 1)( styV  for 

the original estimated field cost in previous exercise? 

Solution: 

i) The correct field cost 2288176128822211  ncnc . 

ii) By Cauchy-Schwartz inequality 
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Thus, to get 1V , the minimum cost will be 

2230)12206.02104.0()( 22
222111  cSWcSWC . 

Or 

 Note that, optimum cost for fix variance, ignoring fpc , is 

 2230
1

2

1

2

1






















 



k

i
iii

k

i
iii cSWcSW

V
C , as 1)( styV . 

Exercise: With two strata, a sampler would like to have 21 nn   (equal allocation) for 
administrative convenience, instead of using the values given by Neyman allocation. If 

)( styV , and optstyV )(  denotes the variances of equal allocation and the Neyman allocation, 

respectively, show that the fractional increase in variance 
2
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
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n

n
r   as given by Neyman allocation i.e. 
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n
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
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Solution:   We know that 
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allocation )( 21 nnn  , if fpc  is ignored, for two strata reduces as 
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and variance under Neyman allocation (for fixed n ), is 
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For fixed n  optimum allocation reduces Neyman allocation, so that 
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Exercise: If the cost function is the form 



k

i
ii nccC

1
0 , where 0c  and ic  are known 

numbers, then 

i) Show that in order to minimize )( styV  for fixed total cost, in  must be proportional to 
3/222



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


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



i

ii

c

SW
. 

ii) Find the in  for a sample of size 1000 under the following conditions: 

Stratum iW  iS  ic  

1 0.4 4 1 

2 0.3 5 2 

3 0.2 6 4 
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Solution: 

i) We have 



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     (1) 

where   is some unknown constant. Using the calculus method of Lagrange multipliers, 
we select in  and the constant   to minimize  . 

Differentiating equation (1) with respect to in , we have 
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Stratified random sampling for proportion 

Theory for estimating population mean Y  or population total Y  on the basis of stratified 
sampling with srswor  and srswr  in the strata can easily be applied to the estimation of a 
population proportion say P  by taking the population values of ijy  as 1 or 0  according as 

the unit belong to that class or possesses a particular character C , then 
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Corollary: If stratified random sampling is with replacement, then the variance is 
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UNIT-III 

CLUSTER SAMPLING 

In random sampling, it is presumed (to suppose) that the population has been divided into a 
finite number of distinct and identifiable units called the sampling units. The smallest units 
into which the population can be divided are called the elements of the population, and a 
group of such elements is known as a cluster. After dividing the population into specified 
cluster (as a simple rule, the number of elements in a cluster should be small and the number 
of cluster should be large), the required number of clusters are then obtained either by the 
method of equal or unequal probabilities of selection, such procedure, when the sampling 
units is a cluster, is called cluster sampling. If the entire area containing the population 
under study is subdivided into smaller area segments, and each element in the population is 
associated with one and only one such area segment, the procedure is alternatively called 
area sampling. There are two main reasons for using cluster as a sampling unit. 

i) Usually a complete list of the population units is not available and therefore the use of 
 individual unit as sampling unit is not feasible. 

ii) Even when a complete list of the population units is available, by using cluster as 
 sampling unit the cost of sampling can be reduced considerably. 

For instance, in a population survey it may be cheaper to collect data from all persons in a 
sample of households than from a sample of the same number of persons selected directly 
from all the persons. Similarly, it would be operationally more convenient to survey all 
households situated in a sample of areas such as villages than to survey a sample of the same 
number of households selected at random from a list of all households. Another example of 
the utility of cluster sampling is provided by crop survey, where locating a randomly selected 
farms or plot requires a considerable part the total time taken for the survey, but once the plot 
is located, the time taken for identifying and surveying a few neighbouring plots will 
generally be only marginal. 

 
Theory of equal clusters 
Suppose the population consists of N  clusters, each of M  elements. A sample of n  clusters 
is drawn by the method of simple random sampling and every unit in the selected clusters is 
enumerated. Let us denote by 

ijy ,  value of the j th element in the i th cluster, Mj ,,1 ; Ni ,,1  . 
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Consider 
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Alternative expression of )( nyV  interms of correlation coefficient 
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Relative efficiency )(RE  of cluster sampling 

In sampling of nM  elements from the population by simple random sampling, wor , the 
variance of the sample mean y  is given by 
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bS  decreases. 

Note:   For large N , the relative efficiency of cluster sampling in terms of intracluster 
correlation coefficient   is given by 
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It can be seen that the relative efficiency depends on the value of  , if 

i) 0 , then )()( nsr yVyV  , i.e. both methods are equally precise. 

ii) 0 , then )()( nsr yVyV  , i.e. simple random sampling is more precise. 

iii) 0 , then )()( nsr yVyV  , i.e. cluster sampling is more precise. 
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Estimation of relative efficiency of cluster sampling 

We have, 
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REEst  , here 2s  will not be a unbiased estimate of 2S  i.e. 22 )( SsE  , 

because a sample of nM  elements is not taken randomly from the population of NM  

elements. To find unbiased estimate of 2S , consider 
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It can be seen that in a random sample of n  clusters, 2
bs  and 2

ws  will provide unbiased 

estimates of 2
bS  and 2

wS , respectively. 

Define, 
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equation (3.8). 
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Alternative method 

We have, 
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Note that, from equation (3.4) 
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It can be seen that in a random sample of n  clusters, 2
bs , and 2

ws  will provide unbiased 

estimate of 2
bS , and 2

wS  respectively. Therefore, an estimator of   will be 
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Determination of optimum cluster size 

The best size of the cluster to use depends on the cost of collecting information from clusters 
and the resulting variance. Regarding the variance function, it is found that variability 
between elements within clusters increases as the size of cluster increases (this means that 
large clusters are found to be more heterogeneous than small clusters) and decreases with 
increasing number of clusters. On the other hand, the cost decreases as the size of cluster 
increases and increases with the number of clusters increases. Hence, it is necessary to 
determine a balancing point by finding out the optimum cluster size and the number of 
clusters in the samples, which can minimize the sampling variance for a given cost or, 
alternatively, minimize the cost for a fixed variance. 

i) The cost of a survey, apart from overhead cost, will be made up of two components. 

ii) Cost due to expenses in enumerating the elements in the sample and in travelling 
within  the cluster, which is proportional to the number of elements in the sample. 

iii) Cost due to expenses on travelling between clusters, which is proportional to the 
distance  to be travelled between clusters. It has been shown empirically that the 
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expected value of  minimum distance between n  points located at random is proportional 

to n . 

The cost of a survey can be, therefore expressed as 

 ncnMcC 21  , 

where 1c  is the cost of collecting information from an element within the cluster and 2c  is 
the cost per unit distance travelled between clusters. In various agricultural surveys it has 

been observed that 2
wS  is related to M  by the relation g

w MaS 2 , 0g , where a  and g  

are positive constant, then 

 12
2

2 )1(
)1(

)1()1( 



 g

g

b aMMS
NM

aMMNSNM
S , for large N . 

Thus, the variance )( nyV  for large N , reduces as 
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The problem is to determine n  and M  such that for specified cost, the variance of ny  is a 

minimum. Using calculus methods we form 
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where   is an unknown constant. Differentiating with respect to n  and M  respectively, and 
equating the results to zero, we obtain 
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On eliminating   from equation (3.9) and (3.10), we have 
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Now solving, 021  CncMnc  as a quadratic in n , we have 
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Now, solve LHS  of equation (6.11), we have 
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It is difficult to get an explicit expression for M . However, M  can be obtained by the 
iterative method (trial and error method). On substituting the value of M  thus obtained in 
equation (3.12), we can obtain the optimum value of n . 

It is evident from equation (3.12) that the optimum size of the unit becomes smaller when 

i) 1c  increases i.e. time of measurement increases. 

ii) 2c  decreases i.e. travel become cheaper. 

iii) total cost of survey C  increases. 

Cluster sampling for proportion 

If it is desired to estimate the proportion P  of elements belonging to a specified category A  
when the population consists of N  clusters, each of size M  and a random sample, wor , of 
n  clusters is selected. Defining ijy  as 1 if the j th element of the i th cluster belongs to 

the class A  and 0  otherwise, it is easy to note that 



M

j
iji ya

1

 gives the total number of 
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elements in the i th cluster that belong to class A , and 
M

a
p i

i   is the proportion in the i

th cluster. Hence the proportion P  is 

 
 


N

i
i

N

i
i

N

i

M

j
ij p

N
a

NM
y

NM
P

111 1

111
. 

An unbiased estimate of P  is pp
n

P
n

i
i  

1

1ˆ  

and 

 














 

N

i
i

N

i
i Pp

nN

nN
Pp

NNn
pV

1

2
2

1

2 )()(
1

111
)( , for large N . 

As an estimate of )( pV  we may use 











 

n

i
i pp

nNn
pV

1

2)(
1

111
)(ˆ . 

Alternatively, if we take a simple random sample, wor  of nM  elements from the population 
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Theory of unequal clusters 

There are a number of situations where the cluster size vary from cluster to cluster, for 
example, villages or urban blocks which are groups of households, and households, which are 
groups of persons are usually considered as clusters for purposes of sampling, because of 
operational convenience. 

Suppose the population, consisting N  clusters of size NMMM ,,, 21   such that 
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Three estimators of population mean Y , that are in common use may be considered. 
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Thus, Iy  is biased estimator of the population mean Y . 

The bias of the estimator is given as 
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This shows that bias is expected to be small when iM  and .iy  are not highly correlated. In 

such a case, it is advisable to use this estimator. 

Its variance is given by 
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This shows that IIy  is unbiased estimate of Y . Its variance is given by 
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This shows that ny  is an unbiased estimator of Y . 

To obtain the variance of ny , we have 
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In view of equations (3.14) and (3.13), we get 
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